From 008888fb1e483fca9c0477696e988fd8c60e9f6a Mon Sep 17 00:00:00 2001 From: Dario Coscia <93731561+dario-coscia@users.noreply.github.com> Date: Tue, 8 Jul 2025 09:22:39 +0200 Subject: [PATCH] fix readme examples (#599) --- README.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 53f43c0..64a2ed0 100644 --- a/README.md +++ b/README.md @@ -90,20 +90,21 @@ Do you want to learn more about it? Look at our [Tutorials](https://github.com/m ### Solve Data Driven Problems Data driven modelling aims to learn a function that given some input data gives an output (e.g. regression, classification, ...). In PINA you can easily do this by: ```python +import torch from pina import Trainer from pina.model import FeedForward from pina.solver import SupervisedSolver from pina.problem.zoo import SupervisedProblem input_tensor = torch.rand((10, 1)) -output_tensor = input_tensor.pow(3) +target_tensor = input_tensor.pow(3) # Step 1. Define problem problem = SupervisedProblem(input_tensor, target_tensor) # Step 2. Design model (you can use your favourite torch.nn.Module in here) model = FeedForward(input_dimensions=1, output_dimensions=1, layers=[64, 64]) # Step 3. Define Solver -solver = SupervisedSolver(problem, model) +solver = SupervisedSolver(problem, model, use_lt=False) # Step 4. Train trainer = Trainer(solver, max_epochs=1000, accelerator='gpu') trainer.train() @@ -149,6 +150,7 @@ class SimpleODE(SpatialProblem): # Step 1. Define problem problem = SimpleODE() +problem.discretise_domain(n=100, mode="grid", domains=["D", "x0"]) # Step 2. Design model (you can use your favourite torch.nn.Module in here) model = FeedForward(input_dimensions=1, output_dimensions=1, layers=[64, 64]) # Step 3. Define Solver