Automatize Tutorials html, py files creation (#496)
* workflow to export tutorials ---------
This commit is contained in:
committed by
Nicola Demo
parent
aea24d0bee
commit
0146155c9b
32
tutorials/tutorial12/tutorial.ipynb
vendored
32
tutorials/tutorial12/tutorial.ipynb
vendored
@@ -53,16 +53,17 @@
|
||||
"source": [
|
||||
"## routine needed to run the notebook on Google Colab\n",
|
||||
"try:\n",
|
||||
" import google.colab\n",
|
||||
" IN_COLAB = True\n",
|
||||
" import google.colab\n",
|
||||
"\n",
|
||||
" IN_COLAB = True\n",
|
||||
"except:\n",
|
||||
" IN_COLAB = False\n",
|
||||
" IN_COLAB = False\n",
|
||||
"if IN_COLAB:\n",
|
||||
" !pip install \"pina-mathlab\"\n",
|
||||
" !pip install \"pina-mathlab\"\n",
|
||||
"\n",
|
||||
"import torch\n",
|
||||
"\n",
|
||||
"#useful imports\n",
|
||||
"# useful imports\n",
|
||||
"from pina import Condition\n",
|
||||
"from pina.problem import SpatialProblem, TimeDependentProblem\n",
|
||||
"from pina.equation import Equation, FixedValue\n",
|
||||
@@ -166,22 +167,23 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Burgers1DEquation(Equation):\n",
|
||||
" \n",
|
||||
" def __init__(self, nu = 0.):\n",
|
||||
"\n",
|
||||
" def __init__(self, nu=0.0):\n",
|
||||
" \"\"\"\n",
|
||||
" Burgers1D class. This class can be\n",
|
||||
" used to enforce the solution u to solve the viscous Burgers 1D Equation.\n",
|
||||
" \n",
|
||||
"\n",
|
||||
" :param torch.float32 nu: the viscosity coefficient. Default value is set to 0.\n",
|
||||
" \"\"\"\n",
|
||||
" self.nu = nu \n",
|
||||
" \n",
|
||||
" def equation(input_, output_):\n",
|
||||
" return grad(output_, input_, d='t') +\\\n",
|
||||
" output_*grad(output_, input_, d='x') -\\\n",
|
||||
" self.nu*laplacian(output_, input_, d='x')\n",
|
||||
" self.nu = nu\n",
|
||||
"\n",
|
||||
" def equation(input_, output_):\n",
|
||||
" return (\n",
|
||||
" grad(output_, input_, d=\"t\")\n",
|
||||
" + output_ * grad(output_, input_, d=\"x\")\n",
|
||||
" - self.nu * laplacian(output_, input_, d=\"x\")\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" \n",
|
||||
" super().__init__(equation)"
|
||||
]
|
||||
},
|
||||
|
||||
188
tutorials/tutorial12/tutorial.py
vendored
Normal file
188
tutorials/tutorial12/tutorial.py
vendored
Normal file
@@ -0,0 +1,188 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# # Tutorial: The `Equation` Class
|
||||
#
|
||||
# [](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial12/tutorial.ipynb)
|
||||
|
||||
# In this tutorial, we will show how to use the `Equation` Class in PINA. Specifically, we will see how use the Class and its inherited classes to enforce residuals minimization in PINNs.
|
||||
|
||||
# # Example: The Burgers 1D equation
|
||||
|
||||
# We will start implementing the viscous Burgers 1D problem Class, described as follows:
|
||||
#
|
||||
#
|
||||
# $$
|
||||
# \begin{equation}
|
||||
# \begin{cases}
|
||||
# \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} &= \nu \frac{\partial^2 u}{ \partial x^2}, \quad x\in(0,1), \quad t>0\\
|
||||
# u(x,0) &= -\sin (\pi x)\\
|
||||
# u(x,t) &= 0 \quad x = \pm 1\\
|
||||
# \end{cases}
|
||||
# \end{equation}
|
||||
# $$
|
||||
#
|
||||
# where we set $ \nu = \frac{0.01}{\pi}$.
|
||||
#
|
||||
# In the class that models this problem we will see in action the `Equation` class and one of its inherited classes, the `FixedValue` class.
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
## routine needed to run the notebook on Google Colab
|
||||
try:
|
||||
import google.colab
|
||||
|
||||
IN_COLAB = True
|
||||
except:
|
||||
IN_COLAB = False
|
||||
if IN_COLAB:
|
||||
get_ipython().system('pip install "pina-mathlab"')
|
||||
|
||||
import torch
|
||||
|
||||
# useful imports
|
||||
from pina import Condition
|
||||
from pina.problem import SpatialProblem, TimeDependentProblem
|
||||
from pina.equation import Equation, FixedValue
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.operator import grad, laplacian
|
||||
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
# define the burger equation
|
||||
def burger_equation(input_, output_):
|
||||
du = grad(output_, input_)
|
||||
ddu = grad(du, input_, components=["dudx"])
|
||||
return (
|
||||
du.extract(["dudt"])
|
||||
+ output_.extract(["u"]) * du.extract(["dudx"])
|
||||
- (0.01 / torch.pi) * ddu.extract(["ddudxdx"])
|
||||
)
|
||||
|
||||
|
||||
# define initial condition
|
||||
def initial_condition(input_, output_):
|
||||
u_expected = -torch.sin(torch.pi * input_.extract(["x"]))
|
||||
return output_.extract(["u"]) - u_expected
|
||||
|
||||
|
||||
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
||||
|
||||
# assign output/ spatial and temporal variables
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [-1, 1]})
|
||||
temporal_domain = CartesianDomain({"t": [0, 1]})
|
||||
|
||||
domains = {
|
||||
"bound_cond1": CartesianDomain({"x": -1, "t": [0, 1]}),
|
||||
"bound_cond2": CartesianDomain({"x": 1, "t": [0, 1]}),
|
||||
"time_cond": CartesianDomain({"x": [-1, 1], "t": 0}),
|
||||
"phys_cond": CartesianDomain({"x": [-1, 1], "t": [0, 1]}),
|
||||
}
|
||||
# problem condition statement
|
||||
conditions = {
|
||||
"bound_cond1": Condition(
|
||||
domain="bound_cond1", equation=FixedValue(0.0)
|
||||
),
|
||||
"bound_cond2": Condition(
|
||||
domain="bound_cond2", equation=FixedValue(0.0)
|
||||
),
|
||||
"time_cond": Condition(
|
||||
domain="time_cond", equation=Equation(initial_condition)
|
||||
),
|
||||
"phys_cond": Condition(
|
||||
domain="phys_cond", equation=Equation(burger_equation)
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
#
|
||||
# The `Equation` class takes as input a function (in this case it happens twice, with `initial_condition` and `burger_equation`) which computes a residual of an equation, such as a PDE. In a problem class such as the one above, the `Equation` class with such a given input is passed as a parameter in the specified `Condition`.
|
||||
#
|
||||
# The `FixedValue` class takes as input a value of same dimensions of the output functions; this class can be used to enforce a fixed value for a specific condition, e.g. Dirichlet boundary conditions, as it happens for instance in our example.
|
||||
#
|
||||
# Once the equations are set as above in the problem conditions, the PINN solver will aim to minimize the residuals described in each equation in the training phase.
|
||||
|
||||
# Available classes of equations include also:
|
||||
# - `FixedGradient` and `FixedFlux`: they work analogously to `FixedValue` class, where we can require a constant value to be enforced, respectively, on the gradient of the solution or the divergence of the solution;
|
||||
# - `Laplace`: it can be used to enforce the laplacian of the solution to be zero;
|
||||
# - `SystemEquation`: we can enforce multiple conditions on the same subdomain through this class, passing a list of residual equations defined in the problem.
|
||||
#
|
||||
|
||||
# # Defining a new Equation class
|
||||
|
||||
# `Equation` classes can be also inherited to define a new class. As example, we can see how to rewrite the above problem introducing a new class `Burgers1D`; during the class call, we can pass the viscosity parameter $\nu$:
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
class Burgers1DEquation(Equation):
|
||||
|
||||
def __init__(self, nu=0.0):
|
||||
"""
|
||||
Burgers1D class. This class can be
|
||||
used to enforce the solution u to solve the viscous Burgers 1D Equation.
|
||||
|
||||
:param torch.float32 nu: the viscosity coefficient. Default value is set to 0.
|
||||
"""
|
||||
self.nu = nu
|
||||
|
||||
def equation(input_, output_):
|
||||
return (
|
||||
grad(output_, input_, d="t")
|
||||
+ output_ * grad(output_, input_, d="x")
|
||||
- self.nu * laplacian(output_, input_, d="x")
|
||||
)
|
||||
|
||||
super().__init__(equation)
|
||||
|
||||
|
||||
# Now we can just pass the above class as input for the last condition, setting $\nu= \frac{0.01}{\pi}$:
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
||||
|
||||
# define initial condition
|
||||
def initial_condition(input_, output_):
|
||||
u_expected = -torch.sin(torch.pi * input_.extract(["x"]))
|
||||
return output_.extract(["u"]) - u_expected
|
||||
|
||||
# assign output/ spatial and temporal variables
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [-1, 1]})
|
||||
temporal_domain = CartesianDomain({"t": [0, 1]})
|
||||
|
||||
domains = {
|
||||
"bound_cond1": CartesianDomain({"x": -1, "t": [0, 1]}),
|
||||
"bound_cond2": CartesianDomain({"x": 1, "t": [0, 1]}),
|
||||
"time_cond": CartesianDomain({"x": [-1, 1], "t": 0}),
|
||||
"phys_cond": CartesianDomain({"x": [-1, 1], "t": [0, 1]}),
|
||||
}
|
||||
# problem condition statement
|
||||
conditions = {
|
||||
"bound_cond1": Condition(
|
||||
domain="bound_cond1", equation=FixedValue(0.0)
|
||||
),
|
||||
"bound_cond2": Condition(
|
||||
domain="bound_cond2", equation=FixedValue(0.0)
|
||||
),
|
||||
"time_cond": Condition(
|
||||
domain="time_cond", equation=Equation(initial_condition)
|
||||
),
|
||||
"phys_cond": Condition(
|
||||
domain="phys_cond", equation=Burgers1DEquation(nu=0.01 / torch.pi)
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
# # What's next?
|
||||
|
||||
# Congratulations on completing the `Equation` class tutorial of **PINA**! As we have seen, you can build new classes that inherit `Equation` to store more complex equations, as the Burgers 1D equation, only requiring to pass the characteristic coefficients of the problem.
|
||||
# From now on, you can:
|
||||
# - define additional complex equation classes (e.g. `SchrodingerEquation`, `NavierStokeEquation`..)
|
||||
# - define more `FixedOperator` (e.g. `FixedCurl`)
|
||||
Reference in New Issue
Block a user