Automatize Tutorials html, py files creation (#496)
* workflow to export tutorials ---------
This commit is contained in:
committed by
Nicola Demo
parent
aea24d0bee
commit
0146155c9b
42
tutorials/tutorial2/tutorial.ipynb
vendored
42
tutorials/tutorial2/tutorial.ipynb
vendored
@@ -23,12 +23,13 @@
|
||||
"source": [
|
||||
"## routine needed to run the notebook on Google Colab\n",
|
||||
"try:\n",
|
||||
" import google.colab\n",
|
||||
" IN_COLAB = True\n",
|
||||
" import google.colab\n",
|
||||
"\n",
|
||||
" IN_COLAB = True\n",
|
||||
"except:\n",
|
||||
" IN_COLAB = False\n",
|
||||
" IN_COLAB = False\n",
|
||||
"if IN_COLAB:\n",
|
||||
" !pip install \"pina-mathlab\"\n",
|
||||
" !pip install \"pina-mathlab\"\n",
|
||||
"\n",
|
||||
"import torch\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
@@ -39,7 +40,7 @@
|
||||
"from pina.solver import PINN\n",
|
||||
"from torch.nn import Softplus\n",
|
||||
"\n",
|
||||
"warnings.filterwarnings('ignore')"
|
||||
"warnings.filterwarnings(\"ignore\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -186,8 +187,7 @@
|
||||
" train_size=0.8, # set train size\n",
|
||||
" val_size=0.0, # set validation size\n",
|
||||
" test_size=0.2, # set testing size\n",
|
||||
" shuffle=True, # shuffle the data\n",
|
||||
" \n",
|
||||
" shuffle=True, # shuffle the data\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# train\n",
|
||||
@@ -348,7 +348,7 @@
|
||||
"\n",
|
||||
" def forward(self, pts):\n",
|
||||
" x, y = pts.extract([\"x\"]), pts.extract([\"y\"])\n",
|
||||
" f = 2 *torch.pi**2 * torch.sin(x * torch.pi) * torch.sin(y * torch.pi)\n",
|
||||
" f = 2 * torch.pi**2 * torch.sin(x * torch.pi) * torch.sin(y * torch.pi)\n",
|
||||
" return LabelTensor(f, [\"feat\"])\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@@ -487,28 +487,36 @@
|
||||
"source": [
|
||||
"class SinSinAB(torch.nn.Module):\n",
|
||||
" \"\"\" \"\"\"\n",
|
||||
"\n",
|
||||
" def __init__(self):\n",
|
||||
" super().__init__()\n",
|
||||
" self.alpha = torch.nn.Parameter(torch.tensor([1.0]))\n",
|
||||
" self.beta = torch.nn.Parameter(torch.tensor([1.0]))\n",
|
||||
"\n",
|
||||
" def forward(self, x):\n",
|
||||
" t = (\n",
|
||||
" self.beta*torch.sin(self.alpha*x.extract(['x'])*torch.pi)*\n",
|
||||
" torch.sin(self.alpha*x.extract(['y'])*torch.pi)\n",
|
||||
" t = (\n",
|
||||
" self.beta\n",
|
||||
" * torch.sin(self.alpha * x.extract([\"x\"]) * torch.pi)\n",
|
||||
" * torch.sin(self.alpha * x.extract([\"y\"]) * torch.pi)\n",
|
||||
" )\n",
|
||||
" return LabelTensor(t, ['b*sin(a*x)sin(a*y)'])\n",
|
||||
" return LabelTensor(t, [\"b*sin(a*x)sin(a*y)\"])\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# make model + solver + trainer\n",
|
||||
"model_learn = FeedForwardWithExtraFeatures(\n",
|
||||
" input_dimensions=len(problem.input_variables) + 1, #we add one as also we consider the extra feature dimension\n",
|
||||
" input_dimensions=len(problem.input_variables)\n",
|
||||
" + 1, # we add one as also we consider the extra feature dimension\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" func=Softplus,\n",
|
||||
" layers=[10, 10],\n",
|
||||
" extra_features=SinSinAB())\n",
|
||||
" extra_features=SinSinAB(),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"pinn_learn = PINN(problem, model_learn, optimizer=TorchOptimizer(torch.optim.Adam, lr=0.006,weight_decay=1e-8))\n",
|
||||
"pinn_learn = PINN(\n",
|
||||
" problem,\n",
|
||||
" model_learn,\n",
|
||||
" optimizer=TorchOptimizer(torch.optim.Adam, lr=0.006, weight_decay=1e-8),\n",
|
||||
")\n",
|
||||
"trainer_learn = Trainer(\n",
|
||||
" solver=pinn_learn, # setting the solver, i.e. PINN\n",
|
||||
" max_epochs=1000, # setting max epochs in training\n",
|
||||
@@ -649,14 +657,14 @@
|
||||
],
|
||||
"source": [
|
||||
"# test error base pinn\n",
|
||||
"print('PINN')\n",
|
||||
"print(\"PINN\")\n",
|
||||
"trainer_base.test()\n",
|
||||
"# test error extra features pinn\n",
|
||||
"print(\"PINN with extra features\")\n",
|
||||
"trainer_feat.test()\n",
|
||||
"# test error learnable extra features pinn\n",
|
||||
"print(\"PINN with learnable extra features\")\n",
|
||||
"_=trainer_learn.test()"
|
||||
"_ = trainer_learn.test()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user