Automatize Tutorials html, py files creation (#496)

* workflow to export tutorials

---------
This commit is contained in:
Dario Coscia
2025-03-15 11:01:19 +01:00
committed by Nicola Demo
parent aea24d0bee
commit 0146155c9b
51 changed files with 140529 additions and 440 deletions

View File

@@ -33,15 +33,16 @@
"source": [
"## routine needed to run the notebook on Google Colab\n",
"try:\n",
" import google.colab\n",
" IN_COLAB = True\n",
" import google.colab\n",
"\n",
" IN_COLAB = True\n",
"except:\n",
" IN_COLAB = False\n",
" IN_COLAB = False\n",
"if IN_COLAB:\n",
" !pip install \"pina-mathlab\"\n",
" !pip install scipy\n",
" # get the data\n",
" !wget https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial5/Data_Darcy.mat\n",
" !pip install \"pina-mathlab\"\n",
" !pip install scipy\n",
" # get the data\n",
" !wget https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial5/Data_Darcy.mat\n",
"\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
@@ -54,7 +55,7 @@
"from pina.solver import SupervisedSolver\n",
"from pina.problem.zoo import SupervisedProblem\n",
"\n",
"warnings.filterwarnings('ignore')"
"warnings.filterwarnings(\"ignore\")"
]
},
{
@@ -129,10 +130,10 @@
],
"source": [
"plt.subplot(1, 2, 1)\n",
"plt.title('permeability')\n",
"plt.title(\"permeability\")\n",
"plt.imshow(k_train[0])\n",
"plt.subplot(1, 2, 2)\n",
"plt.title('field solution')\n",
"plt.title(\"field solution\")\n",
"plt.imshow(u_train[0])\n",
"plt.show()"
]
@@ -278,12 +279,10 @@
" )\n",
" * 100\n",
")\n",
"print(f'Final error training {err:.2f}%')\n",
"print(f\"Final error training {err:.2f}%\")\n",
"\n",
"err = (\n",
" float(\n",
" metric_err(u_test.unsqueeze(-1), model(k_test.unsqueeze(-1))).mean()\n",
" )\n",
" float(metric_err(u_test.unsqueeze(-1), model(k_test.unsqueeze(-1))).mean())\n",
" * 100\n",
")\n",
"print(f\"Final error testing {err:.2f}%\")"

211
tutorials/tutorial5/tutorial.py vendored Normal file
View File

@@ -0,0 +1,211 @@
#!/usr/bin/env python
# coding: utf-8
# # Tutorial: Two dimensional Darcy flow using the Fourier Neural Operator
#
# [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial5/tutorial.ipynb)
#
# In this tutorial we are going to solve the Darcy flow problem in two dimensions, presented in [*Fourier Neural Operator for
# Parametric Partial Differential Equation*](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input-output operations.
# In[1]:
## routine needed to run the notebook on Google Colab
try:
import google.colab
IN_COLAB = True
except:
IN_COLAB = False
if IN_COLAB:
get_ipython().system('pip install "pina-mathlab"')
get_ipython().system("pip install scipy")
# get the data
get_ipython().system(
"wget https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial5/Data_Darcy.mat"
)
import torch
import matplotlib.pyplot as plt
import warnings
# !pip install scipy # install scipy
from scipy import io
from pina.model import FNO, FeedForward # let's import some models
from pina import Condition, Trainer
from pina.solver import SupervisedSolver
from pina.problem.zoo import SupervisedProblem
warnings.filterwarnings("ignore")
# ## Data Generation
#
# We will focus on solving a specific PDE, the **Darcy Flow** equation. The Darcy PDE is a second-order elliptic PDE with the following form:
#
# $$
# -\nabla\cdot(k(x, y)\nabla u(x, y)) = f(x) \quad (x, y) \in D.
# $$
#
# Specifically, $u$ is the flow pressure, $k$ is the permeability field and $f$ is the forcing function. The Darcy flow can parameterize a variety of systems including flow through porous media, elastic materials and heat conduction. Here you will define the domain as a 2D unit square Dirichlet boundary conditions. The dataset is taken from the authors original reference.
#
# In[2]:
# download the dataset
data = io.loadmat("Data_Darcy.mat")
# extract data (we use only 100 data for train)
k_train = torch.tensor(data["k_train"], dtype=torch.float)
u_train = torch.tensor(data["u_train"], dtype=torch.float)
k_test = torch.tensor(data["k_test"], dtype=torch.float)
u_test = torch.tensor(data["u_test"], dtype=torch.float)
x = torch.tensor(data["x"], dtype=torch.float)[0]
y = torch.tensor(data["y"], dtype=torch.float)[0]
# Let's visualize some data
# In[3]:
plt.subplot(1, 2, 1)
plt.title("permeability")
plt.imshow(k_train[0])
plt.subplot(1, 2, 2)
plt.title("field solution")
plt.imshow(u_train[0])
plt.show()
# We now create the Neural Operators problem class. Learning Neural Operators is similar as learning in a supervised manner, therefore we will use `SupervisedProblem`.
# In[4]:
# make problem
problem = SupervisedProblem(
input_=k_train.unsqueeze(-1), output_=u_train.unsqueeze(-1)
)
# ## Solving the problem with a FeedForward Neural Network
#
# We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning.
# In[5]:
# make model
model = FeedForward(input_dimensions=1, output_dimensions=1)
# make solver
solver = SupervisedSolver(problem=problem, model=model, use_lt=False)
# make the trainer and train
trainer = Trainer(
solver=solver,
max_epochs=10,
accelerator="cpu",
enable_model_summary=False,
batch_size=10,
train_size=1.0,
val_size=0.0,
test_size=0.0,
)
trainer.train()
# The final loss is pretty high... We can calculate the error by importing `LpLoss`.
# In[6]:
from pina.loss import LpLoss
# make the metric
metric_err = LpLoss(relative=False)
model = solver.model
err = (
float(
metric_err(u_train.unsqueeze(-1), model(k_train.unsqueeze(-1))).mean()
)
* 100
)
print(f"Final error training {err:.2f}%")
err = (
float(metric_err(u_test.unsqueeze(-1), model(k_test.unsqueeze(-1))).mean())
* 100
)
print(f"Final error testing {err:.2f}%")
# ## Solving the problem with a Fourier Neural Operator (FNO)
#
# We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see.
# In[7]:
# make model
lifting_net = torch.nn.Linear(1, 24)
projecting_net = torch.nn.Linear(24, 1)
model = FNO(
lifting_net=lifting_net,
projecting_net=projecting_net,
n_modes=8,
dimensions=2,
inner_size=24,
padding=8,
)
# make solver
solver = SupervisedSolver(problem=problem, model=model, use_lt=False)
# make the trainer and train
trainer = Trainer(
solver=solver,
max_epochs=10,
accelerator="cpu",
enable_model_summary=False,
batch_size=10,
train_size=1.0,
val_size=0.0,
test_size=0.0,
)
trainer.train()
# We can clearly see that the final loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training, when many data samples are used.
# In[8]:
model = solver.model
err = (
float(
metric_err(u_train.unsqueeze(-1), model(k_train.unsqueeze(-1))).mean()
)
* 100
)
print(f"Final error training {err:.2f}%")
err = (
float(metric_err(u_test.unsqueeze(-1), model(k_test.unsqueeze(-1))).mean())
* 100
)
print(f"Final error testing {err:.2f}%")
# As we can see the loss is way lower!
# ## What's next?
#
# We have made a very simple example on how to use the `FNO` for learning neural operator. Currently in **PINA** we implement 1D/2D/3D cases. We suggest to extend the tutorial using more complex problems and train for longer, to see the full potential of neural operators.