Automatize Tutorials html, py files creation (#496)
* workflow to export tutorials ---------
This commit is contained in:
committed by
Nicola Demo
parent
aea24d0bee
commit
0146155c9b
29
tutorials/tutorial7/tutorial.ipynb
vendored
29
tutorials/tutorial7/tutorial.ipynb
vendored
@@ -75,17 +75,18 @@
|
||||
"source": [
|
||||
"## routine needed to run the notebook on Google Colab\n",
|
||||
"try:\n",
|
||||
" import google.colab\n",
|
||||
" IN_COLAB = True\n",
|
||||
" import google.colab\n",
|
||||
"\n",
|
||||
" IN_COLAB = True\n",
|
||||
"except:\n",
|
||||
" IN_COLAB = False\n",
|
||||
" IN_COLAB = False\n",
|
||||
"if IN_COLAB:\n",
|
||||
" !pip install \"pina-mathlab\"\n",
|
||||
" # get the data\n",
|
||||
" !mkdir \"data\"\n",
|
||||
" !wget \"https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial7/data/pinn_solution_0.5_0.5\" -O \"data/pinn_solution_0.5_0.5\"\n",
|
||||
" !wget \"https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial7/data/pts_0.5_0.5\" -O \"data/pts_0.5_0.5\"\n",
|
||||
" \n",
|
||||
" !pip install \"pina-mathlab\"\n",
|
||||
" # get the data\n",
|
||||
" !mkdir \"data\"\n",
|
||||
" !wget \"https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial7/data/pinn_solution_0.5_0.5\" -O \"data/pinn_solution_0.5_0.5\"\n",
|
||||
" !wget \"https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial7/data/pts_0.5_0.5\" -O \"data/pts_0.5_0.5\"\n",
|
||||
"\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import torch\n",
|
||||
"import warnings\n",
|
||||
@@ -101,7 +102,7 @@
|
||||
"from lightning.pytorch import seed_everything\n",
|
||||
"from lightning.pytorch.callbacks import Callback\n",
|
||||
"\n",
|
||||
"warnings.filterwarnings('ignore')\n",
|
||||
"warnings.filterwarnings(\"ignore\")\n",
|
||||
"seed_everything(883)"
|
||||
]
|
||||
},
|
||||
@@ -152,11 +153,11 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"points = data_input.extract(['x', 'y']).detach().numpy()\n",
|
||||
"points = data_input.extract([\"x\", \"y\"]).detach().numpy()\n",
|
||||
"truth = data_output.detach().numpy()\n",
|
||||
"\n",
|
||||
"plt.scatter(points[:, 0], points[:, 1], c=truth, s=8)\n",
|
||||
"plt.axis('equal')\n",
|
||||
"plt.axis(\"equal\")\n",
|
||||
"plt.colorbar()\n",
|
||||
"plt.show()"
|
||||
]
|
||||
@@ -255,8 +256,8 @@
|
||||
" layers=[20, 20, 20],\n",
|
||||
" func=torch.nn.Softplus,\n",
|
||||
" output_dimensions=len(problem.output_variables),\n",
|
||||
" input_dimensions=len(problem.input_variables)\n",
|
||||
" )"
|
||||
" input_dimensions=len(problem.input_variables),\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user