Improvement in DDP and bug fix in DataModule (#432)

This commit is contained in:
Filippo Olivo
2025-01-28 13:51:57 +01:00
committed by Nicola Demo
parent 629a6ee43b
commit 0194fab0d1
3 changed files with 98 additions and 60 deletions

View File

@@ -6,6 +6,7 @@ from torch.utils.data import Dataset
from abc import abstractmethod
from torch_geometric.data import Batch
class PinaDatasetFactory:
"""
Factory class for the PINA dataset. Depending on the type inside the
@@ -13,6 +14,7 @@ class PinaDatasetFactory:
- PinaTensorDataset for torch.Tensor
- PinaGraphDataset for list of torch_geometric.data.Data objects
"""
def __new__(cls, conditions_dict, **kwargs):
if len(conditions_dict) == 0:
raise ValueError('No conditions provided')
@@ -25,10 +27,12 @@ class PinaDatasetFactory:
raise ValueError('Conditions must be either torch.Tensor or list of Data '
'objects.')
class PinaDataset(Dataset):
"""
Abstract class for the PINA dataset
"""
def __init__(self, conditions_dict, max_conditions_lengths):
self.conditions_dict = conditions_dict
self.max_conditions_lengths = max_conditions_lengths
@@ -49,6 +53,7 @@ class PinaDataset(Dataset):
def __getitem__(self, item):
pass
class PinaTensorDataset(PinaDataset):
def __init__(self, conditions_dict, max_conditions_lengths,
automatic_batching):
@@ -64,45 +69,68 @@ class PinaTensorDataset(PinaDataset):
in v.keys()} for k, v in self.conditions_dict.items()
}
def _getitem_list(self, idx):
def fetch_from_idx_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx%condition_len for idx in cond_idx]
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {k: v[cond_idx]
for k, v in data.items()}
return to_return_dict
@staticmethod
def _getitem_list(idx):
return idx
def get_all_data(self):
index = [i for i in range(len(self))]
return self._getitem_list(index)
return self.fetch_from_idx_list(index)
def __getitem__(self, idx):
return self._getitem_func(idx)
class PinaGraphDataset(PinaDataset):
pass
"""
def __init__(self, conditions_dict, max_conditions_lengths):
'''
def __init__(self, conditions_dict, max_conditions_lengths,
automatic_batching):
super().__init__(conditions_dict, max_conditions_lengths)
if automatic_batching:
self._getitem_func = self._getitem_int
else:
self._getitem_func = self._getitem_list
def __getitem__(self, idx):
Getitem method for large batch size
def fetch_from_idx_list(self, idx):
to_return_dict = {}
for condition, data in self.conditions_dict.items():
cond_idx = idx[:self.max_conditions_lengths[condition]]
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx%condition_len for idx in cond_idx]
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {k: Batch.from_data_list([v[i]
for i in cond_idx])
if isinstance(v, list)
else v[cond_idx].tensor.reshape(-1, v.size(-1))
for k, v in data.items()
}
for i in cond_idx])
if isinstance(v, list)
else v[cond_idx]
for k, v in data.items()
}
return to_return_dict
"""
def _getitem_list(self, idx):
return idx
def _getitem_int(self, idx):
return {
k: {k_data: v[k_data][idx % len(v['input_points'])] for k_data
in v.keys()} for k, v in self.conditions_dict.items()
}
def get_all_data(self):
index = [i for i in range(len(self))]
return self.fetch_from_idx_list(index)
def __getitem__(self, idx):
return self._getitem_func(idx)
'''