CUDA option for labeltensor (#23)

* fix cuda device for labeltensor
This commit is contained in:
Nicola Demo
2022-09-08 17:31:49 +02:00
committed by GitHub
parent 9b2ab7be41
commit 06932196a8
5 changed files with 61 additions and 56 deletions

View File

@@ -19,14 +19,16 @@ def grad(output_, input_, components=None, d=None):
raise RuntimeError
output_fieldname = output_.labels[0]
gradients = torch.autograd.grad(
output_,
input_,
grad_outputs=torch.ones(output_.size()).to(
dtype=input_.dtype,
device=input_.device),
create_graph=True, retain_graph=True, allow_unused=True)[0]
grad_outputs=torch.ones(output_.size(), dtype=output_.dtype,
device=output_.device),
create_graph=True,
retain_graph=True,
allow_unused=True
)[0]
gradients.labels = input_.labels
gradients = gradients.extract(d)
gradients.labels = [f'd{output_fieldname}d{i}' for i in d]
@@ -83,19 +85,16 @@ def div(output_, input_, components=None, d=None):
raise ValueError
grad_output = grad(output_, input_, components, d)
div = torch.zeros(input_.shape[0], 1)
# print(grad_output)
# print('empty', div)
div = torch.zeros(input_.shape[0], 1, device=output_.device)
labels = [None] * len(components)
for i, (c, d) in enumerate(zip(components, d)):
c_fields = f'd{c}d{d}'
# print(c_fields)
div[:, 0] += grad_output.extract(c_fields).sum(axis=1)
labels[i] = c_fields
# print('full', div)
# print(labels)
return LabelTensor(div, ['+'.join(labels)])
div = div.as_subclass(LabelTensor)
div.labels = ['+'.join(labels)]
return div
def nabla(output_, input_, components=None, d=None, method='std'):
@@ -120,14 +119,15 @@ def nabla(output_, input_, components=None, d=None, method='std'):
if len(components) == 1:
grad_output = grad(output_, input_, components=components, d=d)
result = torch.zeros(output_.shape[0], 1)
result = torch.zeros(output_.shape[0], 1, device=output_.device)
for i, label in enumerate(grad_output.labels):
gg = grad(grad_output, input_, d=d, components=[label])
gg = grad(grad_output, input_, d=d, components=[label])
result[:, 0] += gg[:, i]
labels = [f'dd{components[0]}']
else:
result = torch.empty(input_.shape[0], len(components))
result = torch.empty(input_.shape[0], len(components),
device=output_.device)
labels = [None] * len(components)
for idx, (ci, di) in enumerate(zip(components, d)):
@@ -140,28 +140,20 @@ def nabla(output_, input_, components=None, d=None, method='std'):
result[:, idx] = grad(grad_output, input_, d=di).flatten()
labels[idx] = f'dd{ci}dd{di}'
return LabelTensor(result, labels)
result = result.as_subclass(LabelTensor)
result.labels = labels
return result
def advection(output_, input_):
"""
TODO
"""
dimension = len(output_.labels)
for i, label in enumerate(output_.labels):
# compute u dot gradient in each direction
gradient_loc = grad(output_.extract([label]),
input_).extract(input_.labels[:dimension])
dim_0 = gradient_loc.shape[0]
dim_1 = gradient_loc.shape[1]
u_dot_grad_loc = torch.bmm(output_.view(dim_0, 1, dim_1),
gradient_loc.view(dim_0, dim_1, 1))
u_dot_grad_loc = LabelTensor(torch.reshape(u_dot_grad_loc,
(u_dot_grad_loc.shape[0],
u_dot_grad_loc.shape[1])),
[input_.labels[i]])
if i == 0:
adv_term = u_dot_grad_loc
else:
adv_term = adv_term.append(u_dot_grad_loc)
return adv_term
def advection(output_, input_, velocity_field, components=None, d=None):
if d is None:
d = input_.labels
if components is None:
components = output_.labels
tmp = grad(output_, input_, components, d
).reshape(-1, len(components), len(d)).transpose(0, 1)
tmp *= output_.extract(velocity_field)
return tmp.sum(dim=2).T