Continuous Convolution (#69)
* network handling update * adding tutorial * docs
This commit is contained in:
63
pina/model/layers/integral.py
Normal file
63
pina/model/layers/integral.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import torch
|
||||
|
||||
|
||||
class Integral(object):
|
||||
|
||||
def __init__(self, param):
|
||||
"""Integral class for continous convolution
|
||||
|
||||
:param param: type of continuous convolution
|
||||
:type param: string
|
||||
"""
|
||||
|
||||
if param == 'discrete':
|
||||
self.make_integral = self.integral_param_disc
|
||||
elif param == 'continuous':
|
||||
self.make_integral = self.integral_param_cont
|
||||
else:
|
||||
raise TypeError
|
||||
|
||||
def __call__(self, *args, **kwds):
|
||||
return self.make_integral(*args, **kwds)
|
||||
|
||||
def _prepend_zero(self, x):
|
||||
"""Create bins for performing integral
|
||||
|
||||
:param x: input tensor
|
||||
:type x: torch.tensor
|
||||
:return: bins for integrals
|
||||
:rtype: torch.tensor
|
||||
"""
|
||||
return torch.cat((torch.zeros(1, dtype=x.dtype, device=x.device), x))
|
||||
|
||||
def integral_param_disc(self, x, y, idx):
|
||||
"""Perform discretize integral
|
||||
with discrete parameters
|
||||
|
||||
:param x: input vector
|
||||
:type x: torch.tensor
|
||||
:param y: input vector
|
||||
:type y: torch.tensor
|
||||
:param idx: indeces for different strides
|
||||
:type idx: list
|
||||
:return: integral
|
||||
:rtype: torch.tensor
|
||||
"""
|
||||
cs_idxes = self._prepend_zero(torch.cumsum(torch.tensor(idx), 0))
|
||||
cs = self._prepend_zero(torch.cumsum(x.flatten() * y.flatten(), 0))
|
||||
return cs[cs_idxes[1:]] - cs[cs_idxes[:-1]]
|
||||
|
||||
def integral_param_cont(self, x, y, idx):
|
||||
"""Perform discretize integral for continuous convolution
|
||||
with continuous parameters
|
||||
|
||||
:param x: input vector
|
||||
:type x: torch.tensor
|
||||
:param y: input vector
|
||||
:type y: torch.tensor
|
||||
:param idx: indeces for different strides
|
||||
:type idx: list
|
||||
:return: integral
|
||||
:rtype: torch.tensor
|
||||
"""
|
||||
raise NotImplementedError
|
||||
Reference in New Issue
Block a user