renaming
This commit is contained in:
committed by
Nicola Demo
parent
716d43f146
commit
0c4ab3e571
19
pina/solver/physics_informed_solver/__init__.py
Normal file
19
pina/solver/physics_informed_solver/__init__.py
Normal file
@@ -0,0 +1,19 @@
|
||||
"""Module for the Physics-Informed solvers."""
|
||||
|
||||
__all__ = [
|
||||
"PINNInterface",
|
||||
"PINN",
|
||||
"GradientPINN",
|
||||
"CausalPINN",
|
||||
"CompetitivePINN",
|
||||
"SelfAdaptivePINN",
|
||||
"RBAPINN",
|
||||
]
|
||||
|
||||
from .pinn_interface import PINNInterface
|
||||
from .pinn import PINN
|
||||
from .rba_pinn import RBAPINN
|
||||
from .causal_pinn import CausalPINN
|
||||
from .gradient_pinn import GradientPINN
|
||||
from .competitive_pinn import CompetitivePINN
|
||||
from .self_adaptive_pinn import SelfAdaptivePINN
|
||||
219
pina/solver/physics_informed_solver/causal_pinn.py
Normal file
219
pina/solver/physics_informed_solver/causal_pinn.py
Normal file
@@ -0,0 +1,219 @@
|
||||
"""Module for the Causal PINN solver."""
|
||||
|
||||
import torch
|
||||
|
||||
from ...problem import TimeDependentProblem
|
||||
from .pinn import PINN
|
||||
from ...utils import check_consistency
|
||||
|
||||
|
||||
class CausalPINN(PINN):
|
||||
r"""
|
||||
Causal Physics-Informed Neural Network (CausalPINN) solver class.
|
||||
This class implements the Causal Physics-Informed Neural Network solver,
|
||||
using a user specified ``model`` to solve a specific ``problem``.
|
||||
It can be used to solve both forward and inverse problems.
|
||||
|
||||
The Causal Physics-Informed Neural Network solver aims to find the solution
|
||||
:math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
minimizing the loss function:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N_t}\sum_{i=1}^{N_t}
|
||||
\omega_{i}\mathcal{L}_r(t_i),
|
||||
|
||||
where:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_r(t) = \frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i, t)) +
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i, t))
|
||||
|
||||
and,
|
||||
|
||||
.. math::
|
||||
\omega_i = \exp\left(\epsilon \sum_{k=1}^{i-1}\mathcal{L}_r(t_k)\right).
|
||||
|
||||
:math:`\epsilon` is an hyperparameter, set by default to :math:`100`, while
|
||||
:math:`\mathcal{L}` is a specific loss function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Wang, Sifan, Shyam Sankaran, and Paris
|
||||
Perdikaris.
|
||||
*Respecting causality for training physics-informed
|
||||
neural networks.*
|
||||
Computer Methods in Applied Mechanics and Engineering 421 (2024):116813.
|
||||
DOI: `10.1016 <https://doi.org/10.1016/j.cma.2024.116813>`_.
|
||||
|
||||
.. note::
|
||||
This class is only compatible with problems that inherit from the
|
||||
:class:`~pina.problem.time_dependent_problem.TimeDependentProblem`
|
||||
class.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
weighting=None,
|
||||
loss=None,
|
||||
eps=100,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`CausalPINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved. It must
|
||||
inherit from at least
|
||||
:class:`~pina.problem.time_dependent_problem.TimeDependentProblem`.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param torch.optim.LRScheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:param float eps: The exponential decay parameter. Default is ``100``.
|
||||
:raises ValueError: If the problem is not a TimeDependentProblem.
|
||||
"""
|
||||
super().__init__(
|
||||
model=model,
|
||||
problem=problem,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
weighting=weighting,
|
||||
loss=loss,
|
||||
)
|
||||
|
||||
# checking consistency
|
||||
check_consistency(eps, (int, float))
|
||||
self._eps = eps
|
||||
if not isinstance(self.problem, TimeDependentProblem):
|
||||
raise ValueError(
|
||||
"Casual PINN works only for problems"
|
||||
"inheriting from TimeDependentProblem."
|
||||
)
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# split sequentially ordered time tensors into chunks
|
||||
chunks, labels = self._split_tensor_into_chunks(samples)
|
||||
# compute residuals - this correspond to ordered loss functions
|
||||
# values for each time step. Apply `flatten` to ensure obtaining
|
||||
# a tensor of shape #chunks after concatenating the residuals
|
||||
time_loss = []
|
||||
for chunk in chunks:
|
||||
chunk.labels = labels
|
||||
# classical PINN loss
|
||||
residual = self.compute_residual(samples=chunk, equation=equation)
|
||||
loss_val = self.loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
time_loss.append(loss_val)
|
||||
|
||||
# concatenate residuals
|
||||
time_loss = torch.stack(time_loss)
|
||||
# compute weights without storing the gradient
|
||||
with torch.no_grad():
|
||||
weights = self._compute_weights(time_loss)
|
||||
return (weights * time_loss).mean()
|
||||
|
||||
@property
|
||||
def eps(self):
|
||||
"""
|
||||
The exponential decay parameter.
|
||||
|
||||
:return: The exponential decay parameter.
|
||||
:rtype: float
|
||||
"""
|
||||
return self._eps
|
||||
|
||||
@eps.setter
|
||||
def eps(self, value):
|
||||
"""
|
||||
Set the exponential decay parameter.
|
||||
|
||||
:param float value: The exponential decay parameter.
|
||||
"""
|
||||
check_consistency(value, float)
|
||||
self._eps = value
|
||||
|
||||
def _sort_label_tensor(self, tensor):
|
||||
"""
|
||||
Sort the tensor with respect to the temporal variables.
|
||||
|
||||
:param LabelTensor tensor: The tensor to be sorted.
|
||||
:return: The tensor sorted with respect to the temporal variables.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# labels input tensors
|
||||
labels = tensor.labels
|
||||
# extract time tensor
|
||||
time_tensor = tensor.extract(self.problem.temporal_domain.variables)
|
||||
# sort the time tensors (this is very bad for GPU)
|
||||
_, idx = torch.sort(time_tensor.tensor.flatten())
|
||||
tensor = tensor[idx]
|
||||
tensor.labels = labels
|
||||
return tensor
|
||||
|
||||
def _split_tensor_into_chunks(self, tensor):
|
||||
"""
|
||||
Split the tensor into chunks based on time.
|
||||
|
||||
:param LabelTensor tensor: The tensor to be split.
|
||||
:return: A tuple containing the list of tensor chunks and the
|
||||
corresponding labels.
|
||||
:rtype: tuple[list[LabelTensor], list[str]]
|
||||
"""
|
||||
# extract labels
|
||||
labels = tensor.labels
|
||||
# sort input tensor based on time
|
||||
tensor = self._sort_label_tensor(tensor)
|
||||
# extract time tensor
|
||||
time_tensor = tensor.extract(self.problem.temporal_domain.variables)
|
||||
# count unique tensors in time
|
||||
_, idx_split = time_tensor.unique(return_counts=True)
|
||||
# split the tensor based on time
|
||||
chunks = torch.split(tensor, tuple(idx_split))
|
||||
return chunks, labels
|
||||
|
||||
def _compute_weights(self, loss):
|
||||
"""
|
||||
Compute the weights for the physics loss based on the cumulative loss.
|
||||
|
||||
:param LabelTensor loss: The physics loss values.
|
||||
:return: The computed weights for the physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# compute comulative loss and multiply by epsilon
|
||||
cumulative_loss = self._eps * torch.cumsum(loss, dim=0)
|
||||
# return the exponential of the negative weighted cumulative sum
|
||||
return torch.exp(-cumulative_loss)
|
||||
273
pina/solver/physics_informed_solver/competitive_pinn.py
Normal file
273
pina/solver/physics_informed_solver/competitive_pinn.py
Normal file
@@ -0,0 +1,273 @@
|
||||
"""Module for the Competitive PINN solver."""
|
||||
|
||||
import copy
|
||||
import torch
|
||||
|
||||
from ...problem import InverseProblem
|
||||
from .pinn_interface import PINNInterface
|
||||
from ..solver import MultiSolverInterface
|
||||
|
||||
|
||||
class CompetitivePINN(PINNInterface, MultiSolverInterface):
|
||||
r"""
|
||||
Competitive Physics-Informed Neural Network (CompetitivePINN) solver class.
|
||||
This class implements the Competitive Physics-Informed Neural Network
|
||||
solver, using a user specified ``model`` to solve a specific ``problem``.
|
||||
It can be used to solve both forward and inverse problems.
|
||||
|
||||
The Competitive Physics-Informed Neural Network solver aims to find the
|
||||
solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential
|
||||
problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
minimizing the loss function with respect to the model parameters, while
|
||||
maximizing it with respect to the discriminator parameters:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(D(\mathbf{x}_i)\mathcal{A}[\mathbf{u}](\mathbf{x}_i))+
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(D(\mathbf{x}_i)\mathcal{B}[\mathbf{u}](\mathbf{x}_i)),
|
||||
|
||||
where :math:D is the discriminator network, which identifies the points
|
||||
where the model performs worst, and :math:\mathcal{L} is a specific loss
|
||||
function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Zeng, Qi, et al.
|
||||
*Competitive physics informed networks.*
|
||||
International Conference on Learning Representations, ICLR 2022
|
||||
`OpenReview Preprint <https://openreview.net/forum?id=z9SIj-IM7tn>`_.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
discriminator=None,
|
||||
optimizer_model=None,
|
||||
optimizer_discriminator=None,
|
||||
scheduler_model=None,
|
||||
scheduler_discriminator=None,
|
||||
weighting=None,
|
||||
loss=None,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`CompetitivePINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param torch.nn.Module discriminator: The discriminator to be used.
|
||||
If `None`, the discriminator is a deepcopy of the ``model``.
|
||||
Default is ``None``.
|
||||
:param torch.optim.Optimizer optimizer_model: The optimizer of the
|
||||
``model``. If `None`, the :class:`torch.optim.Adam` optimizer is
|
||||
used. Default is ``None``.
|
||||
:param torch.optim.Optimizer optimizer_discriminator: The optimizer of
|
||||
the ``discriminator``. If `None`, the :class:`torch.optim.Adam`
|
||||
optimizer is used. Default is ``None``.
|
||||
:param Scheduler scheduler_model: Learning rate scheduler for the
|
||||
``model``.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param Scheduler scheduler_discriminator: Learning rate scheduler for
|
||||
the ``discriminator``.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
"""
|
||||
if discriminator is None:
|
||||
discriminator = copy.deepcopy(model)
|
||||
|
||||
super().__init__(
|
||||
models=[model, discriminator],
|
||||
problem=problem,
|
||||
optimizers=[optimizer_model, optimizer_discriminator],
|
||||
schedulers=[scheduler_model, scheduler_discriminator],
|
||||
weighting=weighting,
|
||||
loss=loss,
|
||||
)
|
||||
|
||||
# Set automatic optimization to False
|
||||
self.automatic_optimization = False
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass.
|
||||
|
||||
:param LabelTensor x: Input tensor.
|
||||
:return: The output of the neural network.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return self.neural_net(x)
|
||||
|
||||
def training_step(self, batch):
|
||||
"""
|
||||
Solver training step, overridden to perform manual optimization.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:return: The aggregated loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# train model
|
||||
self.optimizer_model.instance.zero_grad()
|
||||
loss = super().training_step(batch)
|
||||
self.manual_backward(loss)
|
||||
self.optimizer_model.instance.step()
|
||||
# train discriminator
|
||||
self.optimizer_discriminator.instance.zero_grad()
|
||||
loss = super().training_step(batch)
|
||||
self.manual_backward(-loss)
|
||||
self.optimizer_discriminator.instance.step()
|
||||
return loss
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# Compute discriminator bets
|
||||
discriminator_bets = self.discriminator(samples)
|
||||
|
||||
# Compute residual and multiply discriminator_bets
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
residual = residual * discriminator_bets
|
||||
|
||||
# Compute competitive residual.
|
||||
loss_val = self.loss(
|
||||
torch.zeros_like(residual, requires_grad=True),
|
||||
residual,
|
||||
)
|
||||
return loss_val
|
||||
|
||||
def configure_optimizers(self):
|
||||
"""
|
||||
Optimizer configuration.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple[list[Optimizer], list[Scheduler]]
|
||||
"""
|
||||
# If the problem is an InverseProblem, add the unknown parameters
|
||||
# to the parameters to be optimized
|
||||
self.optimizer_model.hook(self.neural_net.parameters())
|
||||
self.optimizer_discriminator.hook(self.discriminator.parameters())
|
||||
if isinstance(self.problem, InverseProblem):
|
||||
self.optimizer_model.instance.add_param_group(
|
||||
{
|
||||
"params": [
|
||||
self._params[var]
|
||||
for var in self.problem.unknown_variables
|
||||
]
|
||||
}
|
||||
)
|
||||
self.scheduler_model.hook(self.optimizer_model)
|
||||
self.scheduler_discriminator.hook(self.optimizer_discriminator)
|
||||
return (
|
||||
[
|
||||
self.optimizer_model.instance,
|
||||
self.optimizer_discriminator.instance,
|
||||
],
|
||||
[
|
||||
self.scheduler_model.instance,
|
||||
self.scheduler_discriminator.instance,
|
||||
],
|
||||
)
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||
"""
|
||||
This method is called at the end of each training batch and overrides
|
||||
the PyTorch Lightning implementation to log checkpoints.
|
||||
|
||||
:param torch.Tensor outputs: The ``model``'s output for the current
|
||||
batch.
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:param int batch_idx: The index of the current batch.
|
||||
"""
|
||||
# increase by one the counter of optimization to save loggers
|
||||
(
|
||||
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed
|
||||
) += 1
|
||||
|
||||
return super().on_train_batch_end(outputs, batch, batch_idx)
|
||||
|
||||
@property
|
||||
def neural_net(self):
|
||||
"""
|
||||
The model.
|
||||
|
||||
:return: The model.
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return self.models[0]
|
||||
|
||||
@property
|
||||
def discriminator(self):
|
||||
"""
|
||||
The discriminator.
|
||||
|
||||
:return: The discriminator.
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return self.models[1]
|
||||
|
||||
@property
|
||||
def optimizer_model(self):
|
||||
"""
|
||||
The optimizer associated to the model.
|
||||
|
||||
:return: The optimizer for the model.
|
||||
:rtype: Optimizer
|
||||
"""
|
||||
return self.optimizers[0]
|
||||
|
||||
@property
|
||||
def optimizer_discriminator(self):
|
||||
"""
|
||||
The optimizer associated to the discriminator.
|
||||
|
||||
:return: The optimizer for the discriminator.
|
||||
:rtype: Optimizer
|
||||
"""
|
||||
return self.optimizers[1]
|
||||
|
||||
@property
|
||||
def scheduler_model(self):
|
||||
"""
|
||||
The scheduler associated to the model.
|
||||
|
||||
:return: The scheduler for the model.
|
||||
:rtype: Scheduler
|
||||
"""
|
||||
return self.schedulers[0]
|
||||
|
||||
@property
|
||||
def scheduler_discriminator(self):
|
||||
"""
|
||||
The scheduler associated to the discriminator.
|
||||
|
||||
:return: The scheduler for the discriminator.
|
||||
:rtype: Scheduler
|
||||
"""
|
||||
return self.schedulers[1]
|
||||
130
pina/solver/physics_informed_solver/gradient_pinn.py
Normal file
130
pina/solver/physics_informed_solver/gradient_pinn.py
Normal file
@@ -0,0 +1,130 @@
|
||||
"""Module for the Gradient PINN solver."""
|
||||
|
||||
import torch
|
||||
|
||||
from .pinn import PINN
|
||||
from ...operator import grad
|
||||
from ...problem import SpatialProblem
|
||||
|
||||
|
||||
class GradientPINN(PINN):
|
||||
r"""
|
||||
Gradient Physics-Informed Neural Network (GradientPINN) solver class.
|
||||
This class implements the Gradient Physics-Informed Neural Network solver,
|
||||
using a user specified ``model`` to solve a specific ``problem``.
|
||||
It can be used to solve both forward and inverse problems.
|
||||
|
||||
The Gradient Physics-Informed Neural Network solver aims to find the
|
||||
solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential
|
||||
problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
minimizing the loss function;
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} =& \frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)) +
|
||||
&\frac{1}{N}\sum_{i=1}^N
|
||||
\nabla_{\mathbf{x}}\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\nabla_{\mathbf{x}}\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i))
|
||||
|
||||
|
||||
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Yu, Jeremy, et al.
|
||||
*Gradient-enhanced physics-informed neural networks for forward and
|
||||
inverse PDE problems.*
|
||||
Computer Methods in Applied Mechanics and Engineering 393 (2022):114823.
|
||||
DOI: `10.1016 <https://doi.org/10.1016/j.cma.2022.114823>`_.
|
||||
|
||||
.. note::
|
||||
This class is only compatible with problems that inherit from the
|
||||
:class:`~pina.problem.spatial_problem.SpatialProblem` class.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
weighting=None,
|
||||
loss=None,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`GradientPINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
It must inherit from at least
|
||||
:class:`~pina.problem.spatial_problem.SpatialProblem` to compute the
|
||||
gradient of the loss.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:raises ValueError: If the problem is not a SpatialProblem.
|
||||
"""
|
||||
super().__init__(
|
||||
model=model,
|
||||
problem=problem,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
weighting=weighting,
|
||||
loss=loss,
|
||||
)
|
||||
|
||||
if not isinstance(self.problem, SpatialProblem):
|
||||
raise ValueError(
|
||||
"Gradient PINN computes the gradient of the "
|
||||
"PINN loss with respect to the spatial "
|
||||
"coordinates, thus the PINA problem must be "
|
||||
"a SpatialProblem."
|
||||
)
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# classical PINN loss
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
loss_value = self.loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
|
||||
# gradient PINN loss
|
||||
loss_value = loss_value.reshape(-1, 1)
|
||||
loss_value.labels = ["__loss"]
|
||||
loss_grad = grad(loss_value, samples, d=self.problem.spatial_variables)
|
||||
g_loss_phys = self.loss(
|
||||
torch.zeros_like(loss_grad, requires_grad=True), loss_grad
|
||||
)
|
||||
return loss_value + g_loss_phys
|
||||
121
pina/solver/physics_informed_solver/pinn.py
Normal file
121
pina/solver/physics_informed_solver/pinn.py
Normal file
@@ -0,0 +1,121 @@
|
||||
"""Module for the Physics-Informed Neural Network solver."""
|
||||
|
||||
import torch
|
||||
|
||||
from .pinn_interface import PINNInterface
|
||||
from ..solver import SingleSolverInterface
|
||||
from ...problem import InverseProblem
|
||||
|
||||
|
||||
class PINN(PINNInterface, SingleSolverInterface):
|
||||
r"""
|
||||
Physics-Informed Neural Network (PINN) solver class.
|
||||
This class implements Physics-Informed Neural Network solver, using a user
|
||||
specified ``model`` to solve a specific ``problem``.
|
||||
It can be used to solve both forward and inverse problems.
|
||||
|
||||
The Physics Informed Neural Network solver aims to find the solution
|
||||
:math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
minimizing the loss function:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)),
|
||||
|
||||
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L.,
|
||||
Perdikaris, P., Wang, S., & Yang, L. (2021).
|
||||
*Physics-informed machine learning.*
|
||||
Nature Reviews Physics, 3, 422-440.
|
||||
DOI: `10.1038 <https://doi.org/10.1038/s42254-021-00314-5>`_.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
weighting=None,
|
||||
loss=None,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`PINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
"""
|
||||
super().__init__(
|
||||
model=model,
|
||||
problem=problem,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
weighting=weighting,
|
||||
loss=loss,
|
||||
)
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
loss_value = self.loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
return loss_value
|
||||
|
||||
def configure_optimizers(self):
|
||||
"""
|
||||
Optimizer configuration for the PINN solver.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple[list[Optimizer], list[Scheduler]]
|
||||
"""
|
||||
# If the problem is an InverseProblem, add the unknown parameters
|
||||
# to the parameters to be optimized.
|
||||
self.optimizer.hook(self.model.parameters())
|
||||
if isinstance(self.problem, InverseProblem):
|
||||
self.optimizer.instance.add_param_group(
|
||||
{
|
||||
"params": [
|
||||
self._params[var]
|
||||
for var in self.problem.unknown_variables
|
||||
]
|
||||
}
|
||||
)
|
||||
self.scheduler.hook(self.optimizer)
|
||||
return ([self.optimizer.instance], [self.scheduler.instance])
|
||||
236
pina/solver/physics_informed_solver/pinn_interface.py
Normal file
236
pina/solver/physics_informed_solver/pinn_interface.py
Normal file
@@ -0,0 +1,236 @@
|
||||
"""Module for the Physics-Informed Neural Network Interface."""
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
import torch
|
||||
from torch.nn.modules.loss import _Loss
|
||||
|
||||
from ..solver import SolverInterface
|
||||
from ...utils import check_consistency
|
||||
from ...loss.loss_interface import LossInterface
|
||||
from ...problem import InverseProblem
|
||||
from ...condition import (
|
||||
InputTargetCondition,
|
||||
InputEquationCondition,
|
||||
DomainEquationCondition,
|
||||
)
|
||||
|
||||
|
||||
class PINNInterface(SolverInterface, metaclass=ABCMeta):
|
||||
"""
|
||||
Base class for Physics-Informed Neural Network (PINN) solvers, implementing
|
||||
the :class:`~pina.solver.solver.SolverInterface` class.
|
||||
|
||||
The `PINNInterface` class can be used to define PINNs that work with one or
|
||||
multiple optimizers and/or models. By default, it is compatible with
|
||||
problems defined by :class:`~pina.problem.abstract_problem.AbstractProblem`,
|
||||
and users can choose the problem type the solver is meant to address.
|
||||
"""
|
||||
|
||||
accepted_conditions_types = (
|
||||
InputTargetCondition,
|
||||
InputEquationCondition,
|
||||
DomainEquationCondition,
|
||||
)
|
||||
|
||||
def __init__(self, problem, loss=None, **kwargs):
|
||||
"""
|
||||
Initialization of the :class:`PINNInterface` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:param kwargs: Additional keyword arguments to be passed to the
|
||||
:class:`~pina.solver.solver.SolverInterface` class.
|
||||
"""
|
||||
|
||||
if loss is None:
|
||||
loss = torch.nn.MSELoss()
|
||||
|
||||
super().__init__(problem=problem, use_lt=True, **kwargs)
|
||||
|
||||
# check consistency
|
||||
check_consistency(loss, (LossInterface, _Loss), subclass=False)
|
||||
|
||||
# assign variables
|
||||
self._loss = loss
|
||||
|
||||
# inverse problem handling
|
||||
if isinstance(self.problem, InverseProblem):
|
||||
self._params = self.problem.unknown_parameters
|
||||
self._clamp_params = self._clamp_inverse_problem_params
|
||||
else:
|
||||
self._params = None
|
||||
self._clamp_params = lambda: None
|
||||
|
||||
self.__metric = None
|
||||
|
||||
def optimization_cycle(self, batch):
|
||||
"""
|
||||
The optimization cycle for the PINN solver.
|
||||
|
||||
This method allows to call `_run_optimization_cycle` with the physics
|
||||
loss as argument, thus distinguishing the training step from the
|
||||
validation and test steps.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:return: The losses computed for all conditions in the batch, casted
|
||||
to a subclass of :class:`torch.Tensor`. It should return a dict
|
||||
containing the condition name and the associated scalar loss.
|
||||
:rtype: dict
|
||||
"""
|
||||
return self._run_optimization_cycle(batch, self.loss_phys)
|
||||
|
||||
@torch.set_grad_enabled(True)
|
||||
def validation_step(self, batch):
|
||||
"""
|
||||
The validation step for the PINN solver.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:return: The loss of the validation step.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
losses = self._run_optimization_cycle(batch, self._residual_loss)
|
||||
loss = self.weighting.aggregate(losses).as_subclass(torch.Tensor)
|
||||
self.store_log("val_loss", loss, self.get_batch_size(batch))
|
||||
return loss
|
||||
|
||||
@torch.set_grad_enabled(True)
|
||||
def test_step(self, batch):
|
||||
"""
|
||||
The test step for the PINN solver.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:return: The loss of the test step.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
losses = self._run_optimization_cycle(batch, self._residual_loss)
|
||||
loss = self.weighting.aggregate(losses).as_subclass(torch.Tensor)
|
||||
self.store_log("test_loss", loss, self.get_batch_size(batch))
|
||||
return loss
|
||||
|
||||
def loss_data(self, input_pts, output_pts):
|
||||
"""
|
||||
Compute the data loss for the PINN solver by evaluating the loss
|
||||
between the network's output and the true solution. This method should
|
||||
not be overridden, if not intentionally.
|
||||
|
||||
:param LabelTensor input_pts: The input points to the neural network.
|
||||
:param LabelTensor output_pts: The true solution to compare with the
|
||||
network's output.
|
||||
:return: The supervised loss, averaged over the number of observations.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self._loss(self.forward(input_pts), output_pts)
|
||||
|
||||
@abstractmethod
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation. This method must be overridden in
|
||||
subclasses. It distinguishes different types of PINN solvers.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
def compute_residual(self, samples, equation):
|
||||
"""
|
||||
Compute the residuals of the equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The residual of the solution of the model.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
try:
|
||||
residual = equation.residual(samples, self.forward(samples))
|
||||
except TypeError:
|
||||
# this occurs when the function has three inputs (inverse problem)
|
||||
residual = equation.residual(
|
||||
samples, self.forward(samples), self._params
|
||||
)
|
||||
return residual
|
||||
|
||||
def _residual_loss(self, samples, equation):
|
||||
"""
|
||||
Compute the residual loss.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The residual loss.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
residuals = self.compute_residual(samples, equation)
|
||||
return self.loss(residuals, torch.zeros_like(residuals))
|
||||
|
||||
def _run_optimization_cycle(self, batch, loss_residuals):
|
||||
"""
|
||||
Compute, given a batch, the loss for each condition and return a
|
||||
dictionary with the condition name as key and the loss as value.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:param function loss_residuals: The loss function to be minimized.
|
||||
:return: The losses computed for all conditions in the batch, casted
|
||||
to a subclass of :class:`torch.Tensor`. It should return a dict
|
||||
containing the condition name and the associated scalar loss.
|
||||
:rtype: dict
|
||||
"""
|
||||
condition_loss = {}
|
||||
for condition_name, points in batch:
|
||||
self.__metric = condition_name
|
||||
# if equations are passed
|
||||
if "target" not in points:
|
||||
input_pts = points["input"]
|
||||
condition = self.problem.conditions[condition_name]
|
||||
loss = loss_residuals(
|
||||
input_pts.requires_grad_(), condition.equation
|
||||
)
|
||||
# if data are passed
|
||||
else:
|
||||
input_pts = points["input"]
|
||||
output_pts = points["target"]
|
||||
loss = self.loss_data(
|
||||
input_pts=input_pts.requires_grad_(), output_pts=output_pts
|
||||
)
|
||||
# append loss
|
||||
condition_loss[condition_name] = loss
|
||||
# clamp unknown parameters in InverseProblem (if needed)
|
||||
self._clamp_params()
|
||||
return condition_loss
|
||||
|
||||
def _clamp_inverse_problem_params(self):
|
||||
"""
|
||||
Clamps the parameters of the inverse problem solver to specified ranges.
|
||||
"""
|
||||
for v in self._params:
|
||||
self._params[v].data.clamp_(
|
||||
self.problem.unknown_parameter_domain.range_[v][0],
|
||||
self.problem.unknown_parameter_domain.range_[v][1],
|
||||
)
|
||||
|
||||
@property
|
||||
def loss(self):
|
||||
"""
|
||||
The loss used for training.
|
||||
|
||||
:return: The loss function used for training.
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return self._loss
|
||||
|
||||
@property
|
||||
def current_condition_name(self):
|
||||
"""
|
||||
The current condition name.
|
||||
|
||||
:return: The current condition name.
|
||||
:rtype: str
|
||||
"""
|
||||
return self.__metric
|
||||
188
pina/solver/physics_informed_solver/rba_pinn.py
Normal file
188
pina/solver/physics_informed_solver/rba_pinn.py
Normal file
@@ -0,0 +1,188 @@
|
||||
"""Module for the Residual-Based Attention PINN solver."""
|
||||
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
|
||||
from .pinn import PINN
|
||||
from ...utils import check_consistency
|
||||
|
||||
|
||||
class RBAPINN(PINN):
|
||||
r"""
|
||||
Residual-based Attention Physics-Informed Neural Network (RBAPINN) solver
|
||||
class. This class implements the Residual-based Attention Physics-Informed
|
||||
Neural Network solver, using a user specified ``model`` to solve a specific
|
||||
``problem``. It can be used to solve both forward and inverse problems.
|
||||
|
||||
The Residual-based Attention Physics-Informed Neural Network solver aims to
|
||||
find the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a
|
||||
differential problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
minimizing the loss function:
|
||||
|
||||
.. math::
|
||||
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega}
|
||||
\lambda_{\Omega}^{i} \mathcal{L} \left( \mathcal{A}
|
||||
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
|
||||
\sum_{i=1}^{N_{\partial\Omega}}
|
||||
\lambda_{\partial\Omega}^{i} \mathcal{L}
|
||||
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
|
||||
\right),
|
||||
|
||||
denoting the weights as:
|
||||
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
|
||||
:math:`\lambda_{\partial \Omega}^1, \dots,
|
||||
\lambda_{\Omega}^{N_\partial \Omega}`
|
||||
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
|
||||
|
||||
Residual-based Attention Physics-Informed Neural Network updates the weights
|
||||
of the residuals at every epoch as follows:
|
||||
|
||||
.. math::
|
||||
|
||||
\lambda_i^{k+1} \leftarrow \gamma\lambda_i^{k} +
|
||||
\eta\frac{\lvert r_i\rvert}{\max_j \lvert r_j\rvert},
|
||||
|
||||
where :math:`r_i` denotes the residual at point :math:`i`, :math:`\gamma`
|
||||
denotes the decay rate, and :math:`\eta` is the learning rate for the
|
||||
weights' update.
|
||||
|
||||
.. seealso::
|
||||
**Original reference**: Sokratis J. Anagnostopoulos, Juan D. Toscano,
|
||||
Nikolaos Stergiopulos, and George E. Karniadakis.
|
||||
*Residual-based attention and connection to information
|
||||
bottleneck theory in PINNs.*
|
||||
Computer Methods in Applied Mechanics and Engineering 421 (2024): 116805
|
||||
DOI: `10.1016/j.cma.2024.116805
|
||||
<https://doi.org/10.1016/j.cma.2024.116805>`_.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
weighting=None,
|
||||
loss=None,
|
||||
eta=0.001,
|
||||
gamma=0.999,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`RBAPINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:param float | int eta: The learning rate for the weights of the
|
||||
residuals. Default is ``0.001``.
|
||||
:param float gamma: The decay parameter in the update of the weights
|
||||
of the residuals. Must be between ``0`` and ``1``.
|
||||
Default is ``0.999``.
|
||||
"""
|
||||
super().__init__(
|
||||
model=model,
|
||||
problem=problem,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
weighting=weighting,
|
||||
loss=loss,
|
||||
)
|
||||
|
||||
# check consistency
|
||||
check_consistency(eta, (float, int))
|
||||
check_consistency(gamma, float)
|
||||
assert (
|
||||
0 < gamma < 1
|
||||
), f"Invalid range: expected 0 < gamma < 1, got {gamma=}"
|
||||
self.eta = eta
|
||||
self.gamma = gamma
|
||||
|
||||
# initialize weights
|
||||
self.weights = {}
|
||||
for condition_name in problem.conditions:
|
||||
self.weights[condition_name] = 0
|
||||
|
||||
# define vectorial loss
|
||||
self._vectorial_loss = deepcopy(self.loss)
|
||||
self._vectorial_loss.reduction = "none"
|
||||
|
||||
# for now RBAPINN is implemented only for batch_size = None
|
||||
def on_train_start(self):
|
||||
"""
|
||||
Hook method called at the beginning of training.
|
||||
|
||||
:raises NotImplementedError: If the batch size is not ``None``.
|
||||
"""
|
||||
if self.trainer.batch_size is not None:
|
||||
raise NotImplementedError(
|
||||
"RBAPINN only works with full batch "
|
||||
"size, set batch_size=None inside the "
|
||||
"Trainer to use the solver."
|
||||
)
|
||||
return super().on_train_start()
|
||||
|
||||
def _vect_to_scalar(self, loss_value):
|
||||
"""
|
||||
Computation of the scalar loss.
|
||||
|
||||
:param LabelTensor loss_value: the tensor of pointwise losses.
|
||||
:raises RuntimeError: If the loss reduction is not ``mean`` or ``sum``.
|
||||
:return: The computed scalar loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
if self.loss.reduction == "mean":
|
||||
ret = torch.mean(loss_value)
|
||||
elif self.loss.reduction == "sum":
|
||||
ret = torch.sum(loss_value)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Invalid reduction, got {self.loss.reduction} "
|
||||
"but expected mean or sum."
|
||||
)
|
||||
return ret
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
cond = self.current_condition_name
|
||||
|
||||
r_norm = (
|
||||
self.eta
|
||||
* torch.abs(residual)
|
||||
/ (torch.max(torch.abs(residual)) + 1e-12)
|
||||
)
|
||||
self.weights[cond] = (self.gamma * self.weights[cond] + r_norm).detach()
|
||||
|
||||
loss_value = self._vectorial_loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
|
||||
return self._vect_to_scalar(self.weights[cond] ** 2 * loss_value)
|
||||
386
pina/solver/physics_informed_solver/self_adaptive_pinn.py
Normal file
386
pina/solver/physics_informed_solver/self_adaptive_pinn.py
Normal file
@@ -0,0 +1,386 @@
|
||||
"""Module for the Self-Adaptive PINN solver."""
|
||||
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
|
||||
from ...utils import check_consistency
|
||||
from ...problem import InverseProblem
|
||||
from ..solver import MultiSolverInterface
|
||||
from .pinn_interface import PINNInterface
|
||||
|
||||
|
||||
class Weights(torch.nn.Module):
|
||||
"""
|
||||
Implementation of the mask model for the self-adaptive weights of the
|
||||
:class:`SelfAdaptivePINN` solver.
|
||||
"""
|
||||
|
||||
def __init__(self, func):
|
||||
"""
|
||||
Initialization of the :class:`Weights` class.
|
||||
|
||||
:param torch.nn.Module func: the mask model.
|
||||
"""
|
||||
super().__init__()
|
||||
check_consistency(func, torch.nn.Module)
|
||||
self.sa_weights = torch.nn.Parameter(torch.Tensor())
|
||||
self.func = func
|
||||
|
||||
def forward(self):
|
||||
"""
|
||||
Forward pass implementation for the mask module.
|
||||
|
||||
:return: evaluation of self adaptive weights through the mask.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self.func(self.sa_weights)
|
||||
|
||||
|
||||
class SelfAdaptivePINN(PINNInterface, MultiSolverInterface):
|
||||
r"""
|
||||
Self-Adaptive Physics-Informed Neural Network (SelfAdaptivePINN) solver
|
||||
class. This class implements the Self-Adaptive Physics-Informed Neural
|
||||
Network solver, using a user specified ``model`` to solve a specific
|
||||
``problem``. It can be used to solve both forward and inverse problems.
|
||||
|
||||
The Self-Adapive Physics-Informed Neural Network solver aims to find the
|
||||
solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential
|
||||
problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
integrating pointwise loss evaluation using a mask :math:m and self-adaptive
|
||||
weights, which allow the model to focus on regions of the domain where the
|
||||
residual is higher.
|
||||
|
||||
The loss function to solve the problem is
|
||||
|
||||
.. math::
|
||||
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega} m
|
||||
\left( \lambda_{\Omega}^{i} \right) \mathcal{L} \left( \mathcal{A}
|
||||
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
|
||||
\sum_{i=1}^{N_{\partial\Omega}}
|
||||
m \left( \lambda_{\partial\Omega}^{i} \right) \mathcal{L}
|
||||
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
|
||||
\right),
|
||||
|
||||
denoting the self adaptive weights as
|
||||
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
|
||||
:math:`\lambda_{\partial \Omega}^1, \dots,
|
||||
\lambda_{\Omega}^{N_\partial \Omega}`
|
||||
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
|
||||
|
||||
The Self-Adaptive Physics-Informed Neural Network solver identifies the
|
||||
solution and appropriate self adaptive weights by solving the following
|
||||
optimization problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\min_{w} \max_{\lambda_{\Omega}^k, \lambda_{\partial \Omega}^s}
|
||||
\mathcal{L} ,
|
||||
|
||||
where :math:`w` denotes the network parameters, and :math:`\mathcal{L}` is a
|
||||
specific loss function, , typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
**Original reference**: McClenny, Levi D., and Ulisses M. Braga-Neto.
|
||||
*Self-adaptive physics-informed neural networks.*
|
||||
Journal of Computational Physics 474 (2023): 111722.
|
||||
DOI: `10.1016/j.jcp.2022.111722
|
||||
<https://doi.org/10.1016/j.jcp.2022.111722>`_.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
weight_function=torch.nn.Sigmoid(),
|
||||
optimizer_model=None,
|
||||
optimizer_weights=None,
|
||||
scheduler_model=None,
|
||||
scheduler_weights=None,
|
||||
weighting=None,
|
||||
loss=None,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`SelfAdaptivePINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module model: The model to be used.
|
||||
:param torch.nn.Module weight_function: The Self-Adaptive mask model.
|
||||
Default is ``torch.nn.Sigmoid()``.
|
||||
:param Optimizer optimizer_model: The optimizer of the ``model``.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Optimizer optimizer_weights: The optimizer of the
|
||||
``weight_function``.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler_model: Learning rate scheduler for the
|
||||
``model``.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param Scheduler scheduler_weights: Learning rate scheduler for the
|
||||
``weight_function``.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
"""
|
||||
# check consistency weitghs_function
|
||||
check_consistency(weight_function, torch.nn.Module)
|
||||
|
||||
# create models for weights
|
||||
weights_dict = {}
|
||||
for condition_name in problem.conditions:
|
||||
weights_dict[condition_name] = Weights(weight_function)
|
||||
weights_dict = torch.nn.ModuleDict(weights_dict)
|
||||
|
||||
super().__init__(
|
||||
models=[model, weights_dict],
|
||||
problem=problem,
|
||||
optimizers=[optimizer_model, optimizer_weights],
|
||||
schedulers=[scheduler_model, scheduler_weights],
|
||||
weighting=weighting,
|
||||
loss=loss,
|
||||
)
|
||||
|
||||
# Set automatic optimization to False
|
||||
self.automatic_optimization = False
|
||||
|
||||
self._vectorial_loss = deepcopy(self.loss)
|
||||
self._vectorial_loss.reduction = "none"
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass.
|
||||
|
||||
:param LabelTensor x: Input tensor.
|
||||
:return: The output of the neural network.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return self.model(x)
|
||||
|
||||
def training_step(self, batch):
|
||||
"""
|
||||
Solver training step, overridden to perform manual optimization.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:return: The aggregated loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# Weights optimization
|
||||
self.optimizer_weights.instance.zero_grad()
|
||||
loss = super().training_step(batch)
|
||||
self.manual_backward(-loss)
|
||||
self.optimizer_weights.instance.step()
|
||||
|
||||
# Model optimization
|
||||
self.optimizer_model.instance.zero_grad()
|
||||
loss = super().training_step(batch)
|
||||
self.manual_backward(loss)
|
||||
self.optimizer_model.instance.step()
|
||||
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
"""
|
||||
Optimizer configuration.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple[list[Optimizer], list[Scheduler]]
|
||||
"""
|
||||
# If the problem is an InverseProblem, add the unknown parameters
|
||||
# to the parameters to be optimized
|
||||
self.optimizer_model.hook(self.model.parameters())
|
||||
self.optimizer_weights.hook(self.weights_dict.parameters())
|
||||
if isinstance(self.problem, InverseProblem):
|
||||
self.optimizer_model.instance.add_param_group(
|
||||
{
|
||||
"params": [
|
||||
self._params[var]
|
||||
for var in self.problem.unknown_variables
|
||||
]
|
||||
}
|
||||
)
|
||||
self.scheduler_model.hook(self.optimizer_model)
|
||||
self.scheduler_weights.hook(self.optimizer_weights)
|
||||
return (
|
||||
[self.optimizer_model.instance, self.optimizer_weights.instance],
|
||||
[self.scheduler_model.instance, self.scheduler_weights.instance],
|
||||
)
|
||||
|
||||
def on_train_batch_end(self, outputs, batch, batch_idx):
|
||||
"""
|
||||
This method is called at the end of each training batch and overrides
|
||||
the PyTorch Lightning implementation to log checkpoints.
|
||||
|
||||
:param torch.Tensor outputs: The ``model``'s output for the current
|
||||
batch.
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:param int batch_idx: The index of the current batch.
|
||||
"""
|
||||
# increase by one the counter of optimization to save loggers
|
||||
(
|
||||
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed
|
||||
) += 1
|
||||
|
||||
return super().on_train_batch_end(outputs, batch, batch_idx)
|
||||
|
||||
def on_train_start(self):
|
||||
"""
|
||||
This method is called at the start of the training process to set the
|
||||
self-adaptive weights as parameters of the mask model.
|
||||
|
||||
:raises NotImplementedError: If the batch size is not ``None``.
|
||||
"""
|
||||
if self.trainer.batch_size is not None:
|
||||
raise NotImplementedError(
|
||||
"SelfAdaptivePINN only works with full "
|
||||
"batch size, set batch_size=None inside "
|
||||
"the Trainer to use the solver."
|
||||
)
|
||||
device = torch.device(
|
||||
self.trainer._accelerator_connector._accelerator_flag
|
||||
)
|
||||
|
||||
# Initialize the self adaptive weights only for training points
|
||||
for (
|
||||
condition_name,
|
||||
tensor,
|
||||
) in self.trainer.data_module.train_dataset.input.items():
|
||||
self.weights_dict[condition_name].sa_weights.data = torch.rand(
|
||||
(tensor.shape[0], 1), device=device
|
||||
)
|
||||
return super().on_train_start()
|
||||
|
||||
def on_load_checkpoint(self, checkpoint):
|
||||
"""
|
||||
Override of the Pytorch Lightning ``on_load_checkpoint`` method to
|
||||
handle checkpoints for Self-Adaptive Weights. This method should not be
|
||||
overridden, if not intentionally.
|
||||
|
||||
:param dict checkpoint: Pytorch Lightning checkpoint dict.
|
||||
"""
|
||||
# First initialize self-adaptive weights with correct shape,
|
||||
# then load the values from the checkpoint.
|
||||
for condition_name, _ in self.problem.input_pts.items():
|
||||
shape = checkpoint["state_dict"][
|
||||
f"_pina_models.1.{condition_name}.sa_weights"
|
||||
].shape
|
||||
self.weights_dict[condition_name].sa_weights.data = torch.rand(
|
||||
shape
|
||||
)
|
||||
return super().on_load_checkpoint(checkpoint)
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
residual = self.compute_residual(samples, equation)
|
||||
weights = self.weights_dict[self.current_condition_name].forward()
|
||||
loss_value = self._vectorial_loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
return self._vect_to_scalar(weights * loss_value)
|
||||
|
||||
def _vect_to_scalar(self, loss_value):
|
||||
"""
|
||||
Computation of the scalar loss.
|
||||
|
||||
:param LabelTensor loss_value: the tensor of pointwise losses.
|
||||
:raises RuntimeError: If the loss reduction is not ``mean`` or ``sum``.
|
||||
:return: The computed scalar loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
if self.loss.reduction == "mean":
|
||||
ret = torch.mean(loss_value)
|
||||
elif self.loss.reduction == "sum":
|
||||
ret = torch.sum(loss_value)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Invalid reduction, got {self.loss.reduction} "
|
||||
"but expected mean or sum."
|
||||
)
|
||||
return ret
|
||||
|
||||
@property
|
||||
def model(self):
|
||||
"""
|
||||
The model.
|
||||
|
||||
:return: The model.
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return self.models[0]
|
||||
|
||||
@property
|
||||
def weights_dict(self):
|
||||
"""
|
||||
The self-adaptive weights.
|
||||
|
||||
:return: The self-adaptive weights.
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
return self.models[1]
|
||||
|
||||
@property
|
||||
def scheduler_model(self):
|
||||
"""
|
||||
The scheduler associated to the model.
|
||||
|
||||
:return: The scheduler for the model.
|
||||
:rtype: Scheduler
|
||||
"""
|
||||
return self.schedulers[0]
|
||||
|
||||
@property
|
||||
def scheduler_weights(self):
|
||||
"""
|
||||
The scheduler associated to the mask model.
|
||||
|
||||
:return: The scheduler for the mask model.
|
||||
:rtype: Scheduler
|
||||
"""
|
||||
return self.schedulers[1]
|
||||
|
||||
@property
|
||||
def optimizer_model(self):
|
||||
"""
|
||||
Returns the optimizer associated to the model.
|
||||
|
||||
:return: The optimizer for the model.
|
||||
:rtype: Optimizer
|
||||
"""
|
||||
return self.optimizers[0]
|
||||
|
||||
@property
|
||||
def optimizer_weights(self):
|
||||
"""
|
||||
The optimizer associated to the mask model.
|
||||
|
||||
:return: The optimizer for the mask model.
|
||||
:rtype: Optimizer
|
||||
"""
|
||||
return self.optimizers[1]
|
||||
Reference in New Issue
Block a user