renaming
This commit is contained in:
committed by
Nicola Demo
parent
716d43f146
commit
0c4ab3e571
130
pina/solver/physics_informed_solver/gradient_pinn.py
Normal file
130
pina/solver/physics_informed_solver/gradient_pinn.py
Normal file
@@ -0,0 +1,130 @@
|
||||
"""Module for the Gradient PINN solver."""
|
||||
|
||||
import torch
|
||||
|
||||
from .pinn import PINN
|
||||
from ...operator import grad
|
||||
from ...problem import SpatialProblem
|
||||
|
||||
|
||||
class GradientPINN(PINN):
|
||||
r"""
|
||||
Gradient Physics-Informed Neural Network (GradientPINN) solver class.
|
||||
This class implements the Gradient Physics-Informed Neural Network solver,
|
||||
using a user specified ``model`` to solve a specific ``problem``.
|
||||
It can be used to solve both forward and inverse problems.
|
||||
|
||||
The Gradient Physics-Informed Neural Network solver aims to find the
|
||||
solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential
|
||||
problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
minimizing the loss function;
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} =& \frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)) +
|
||||
&\frac{1}{N}\sum_{i=1}^N
|
||||
\nabla_{\mathbf{x}}\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\nabla_{\mathbf{x}}\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i))
|
||||
|
||||
|
||||
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Yu, Jeremy, et al.
|
||||
*Gradient-enhanced physics-informed neural networks for forward and
|
||||
inverse PDE problems.*
|
||||
Computer Methods in Applied Mechanics and Engineering 393 (2022):114823.
|
||||
DOI: `10.1016 <https://doi.org/10.1016/j.cma.2022.114823>`_.
|
||||
|
||||
.. note::
|
||||
This class is only compatible with problems that inherit from the
|
||||
:class:`~pina.problem.spatial_problem.SpatialProblem` class.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
weighting=None,
|
||||
loss=None,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`GradientPINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
It must inherit from at least
|
||||
:class:`~pina.problem.spatial_problem.SpatialProblem` to compute the
|
||||
gradient of the loss.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:raises ValueError: If the problem is not a SpatialProblem.
|
||||
"""
|
||||
super().__init__(
|
||||
model=model,
|
||||
problem=problem,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
weighting=weighting,
|
||||
loss=loss,
|
||||
)
|
||||
|
||||
if not isinstance(self.problem, SpatialProblem):
|
||||
raise ValueError(
|
||||
"Gradient PINN computes the gradient of the "
|
||||
"PINN loss with respect to the spatial "
|
||||
"coordinates, thus the PINA problem must be "
|
||||
"a SpatialProblem."
|
||||
)
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# classical PINN loss
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
loss_value = self.loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
|
||||
# gradient PINN loss
|
||||
loss_value = loss_value.reshape(-1, 1)
|
||||
loss_value.labels = ["__loss"]
|
||||
loss_grad = grad(loss_value, samples, d=self.problem.spatial_variables)
|
||||
g_loss_phys = self.loss(
|
||||
torch.zeros_like(loss_grad, requires_grad=True), loss_grad
|
||||
)
|
||||
return loss_value + g_loss_phys
|
||||
Reference in New Issue
Block a user