Tutorials and Doc (#191)
* Tutorial doc update * update doc tutorial * doc not compiling --------- Co-authored-by: Dario Coscia <dcoscia@euclide.maths.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
This commit is contained in:
406
docs/source/_rst/tutorials/tutorial2/tutorial.rst
Normal file
406
docs/source/_rst/tutorials/tutorial2/tutorial.rst
Normal file
@@ -0,0 +1,406 @@
|
||||
Tutorial: Two dimensional Poisson problem using Extra Features Learning
|
||||
=======================================================================
|
||||
|
||||
This tutorial presents how to solve with Physics-Informed Neural
|
||||
Networks (PINNs) a 2D Poisson problem with Dirichlet boundary
|
||||
conditions. We will train with standard PINN’s training, and with
|
||||
extrafeatures. For more insights on extrafeature learning please read
|
||||
`An extended physics informed neural network for preliminary analysis of
|
||||
parametric optimal control
|
||||
problems <https://www.sciencedirect.com/science/article/abs/pii/S0898122123002018>`__.
|
||||
|
||||
First of all, some useful imports.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
import torch
|
||||
from torch.nn import Softplus
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.model import FeedForward
|
||||
from pina.solvers import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.plotter import Plotter
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina.equation import Equation, FixedValue
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.callbacks import MetricTracker
|
||||
|
||||
The problem definition
|
||||
----------------------
|
||||
|
||||
The two-dimensional Poisson problem is mathematically written as:
|
||||
:raw-latex:`\begin{equation}
|
||||
\begin{cases}
|
||||
\Delta u = \sin{(\pi x)} \sin{(\pi y)} \text{ in } D, \\
|
||||
u = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4,
|
||||
\end{cases}
|
||||
\end{equation}` where :math:`D` is a square domain :math:`[0,1]^2`, and
|
||||
:math:`\Gamma_i`, with :math:`i=1,...,4`, are the boundaries of the
|
||||
square.
|
||||
|
||||
The Poisson problem is written in **PINA** code as a class. The
|
||||
equations are written as *conditions* that should be satisfied in the
|
||||
corresponding domains. The *truth_solution* is the exact solution which
|
||||
will be compared with the predicted one.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||
torch.sin(input_.extract(['y'])*torch.pi))
|
||||
laplacian_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
|
||||
return laplacian_u - force_term
|
||||
|
||||
# here we write the problem conditions
|
||||
conditions = {
|
||||
'gamma1': Condition(location=CartesianDomain({'x': [0, 1], 'y': 1}), equation=FixedValue(0.)),
|
||||
'gamma2': Condition(location=CartesianDomain({'x': [0, 1], 'y': 0}), equation=FixedValue(0.)),
|
||||
'gamma3': Condition(location=CartesianDomain({'x': 1, 'y': [0, 1]}), equation=FixedValue(0.)),
|
||||
'gamma4': Condition(location=CartesianDomain({'x': 0, 'y': [0, 1]}), equation=FixedValue(0.)),
|
||||
'D': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1]}), equation=Equation(laplace_equation)),
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(
|
||||
torch.sin(pts.extract(['x'])*torch.pi)*
|
||||
torch.sin(pts.extract(['y'])*torch.pi)
|
||||
)/(2*torch.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
problem = Poisson()
|
||||
|
||||
# let's discretise the domain
|
||||
problem.discretise_domain(25, 'grid', locations=['D'])
|
||||
problem.discretise_domain(25, 'grid', locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
|
||||
|
||||
Solving the problem with standard PINNs
|
||||
---------------------------------------
|
||||
|
||||
After the problem, the feed-forward neural network is defined, through
|
||||
the class ``FeedForward``. This neural network takes as input the
|
||||
coordinates (in this case :math:`x` and :math:`y`) and provides the
|
||||
unkwown field of the Poisson problem. The residual of the equations are
|
||||
evaluated at several sampling points (which the user can manipulate
|
||||
using the method ``CartesianDomain_pts``) and the loss minimized by the
|
||||
neural network is the sum of the residuals.
|
||||
|
||||
In this tutorial, the neural network is composed by two hidden layers of
|
||||
10 neurons each, and it is trained for 1000 epochs with a learning rate
|
||||
of 0.006 and :math:`l_2` weight regularization set to :math:`10^{-7}`.
|
||||
These parameters can be modified as desired. We use the
|
||||
``MetricTracker`` class to track the metrics during training.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
# make model + solver + trainer
|
||||
model = FeedForward(
|
||||
layers=[10, 10],
|
||||
func=Softplus,
|
||||
output_dimensions=len(problem.output_variables),
|
||||
input_dimensions=len(problem.input_variables)
|
||||
)
|
||||
pinn = PINN(problem, model, optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8})
|
||||
trainer = Trainer(pinn, max_epochs=1000, callbacks=[MetricTracker()], accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
|
||||
|
||||
# train
|
||||
trainer.train()
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
/u/d/dcoscia/.local/lib/python3.9/site-packages/torch/cuda/__init__.py:546: UserWarning: Can't initialize NVML
|
||||
warnings.warn("Can't initialize NVML")
|
||||
/u/d/dcoscia/.local/lib/python3.9/site-packages/torch/cuda/__init__.py:651: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:109.)
|
||||
return torch._C._cuda_getDeviceCount() if nvml_count < 0 else nvml_count
|
||||
GPU available: False, used: False
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
Missing logger folder: /u/d/dcoscia/PINA/tutorials/tutorial2/lightning_logs
|
||||
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Training: 0it [00:00, ?it/s]
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=1000` reached.
|
||||
|
||||
|
||||
Now the ``Plotter`` class is used to plot the results. The solution
|
||||
predicted by the neural network is plotted on the left, the exact one is
|
||||
represented at the center and on the right the error between the exact
|
||||
and the predicted solutions is showed.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
plotter = Plotter()
|
||||
plotter.plot(trainer)
|
||||
|
||||
|
||||
|
||||
.. image:: tutorial_files/tutorial_9_0.png
|
||||
|
||||
|
||||
Solving the problem with extra-features PINNs
|
||||
---------------------------------------------
|
||||
|
||||
Now, the same problem is solved in a different way. A new neural network
|
||||
is now defined, with an additional input variable, named extra-feature,
|
||||
which coincides with the forcing term in the Laplace equation. The set
|
||||
of input variables to the neural network is:
|
||||
|
||||
:raw-latex:`\begin{equation}
|
||||
[x, y, k(x, y)], \text{ with } k(x, y)=\sin{(\pi x)}\sin{(\pi y)},
|
||||
\end{equation}`
|
||||
|
||||
where :math:`x` and :math:`y` are the spatial coordinates and
|
||||
:math:`k(x, y)` is the added feature.
|
||||
|
||||
This feature is initialized in the class ``SinSin``, which needs to be
|
||||
inherited by the ``torch.nn.Module`` class and to have the ``forward``
|
||||
method. After declaring such feature, we can just incorporate in the
|
||||
``FeedForward`` class thanks to the ``extra_features`` argument. **NB**:
|
||||
``extra_features`` always needs a ``list`` as input, you you have one
|
||||
feature just encapsulated it in a class, as in the next cell.
|
||||
|
||||
Finally, we perform the same training as before: the problem is
|
||||
``Poisson``, the network is composed by the same number of neurons and
|
||||
optimizer parameters are equal to previous test, the only change is the
|
||||
new extra feature.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
class SinSin(torch.nn.Module):
|
||||
"""Feature: sin(x)*sin(y)"""
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
t = (torch.sin(x.extract(['x'])*torch.pi) *
|
||||
torch.sin(x.extract(['y'])*torch.pi))
|
||||
return LabelTensor(t, ['sin(x)sin(y)'])
|
||||
|
||||
|
||||
# make model + solver + trainer
|
||||
model_feat = FeedForward(
|
||||
layers=[10, 10],
|
||||
func=Softplus,
|
||||
output_dimensions=len(problem.output_variables),
|
||||
input_dimensions=len(problem.input_variables)+1
|
||||
)
|
||||
pinn_feat = PINN(problem, model_feat, extra_features=[SinSin()], optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8})
|
||||
trainer_feat = Trainer(pinn_feat, max_epochs=1000, callbacks=[MetricTracker()], accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
|
||||
|
||||
# train
|
||||
trainer_feat.train()
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
GPU available: False, used: False
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Training: 0it [00:00, ?it/s]
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=1000` reached.
|
||||
|
||||
|
||||
The predicted and exact solutions and the error between them are
|
||||
represented below. We can easily note that now our network, having
|
||||
almost the same condition as before, is able to reach additional order
|
||||
of magnitudes in accuracy.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
plotter.plot(trainer_feat)
|
||||
|
||||
|
||||
|
||||
.. image:: tutorial_files/tutorial_14_0.png
|
||||
|
||||
|
||||
Solving the problem with learnable extra-features PINNs
|
||||
-------------------------------------------------------
|
||||
|
||||
We can still do better!
|
||||
|
||||
Another way to exploit the extra features is the addition of learnable
|
||||
parameter inside them. In this way, the added parameters are learned
|
||||
during the training phase of the neural network. In this case, we use:
|
||||
|
||||
:raw-latex:`\begin{equation}
|
||||
k(x, \mathbf{y}) = \beta \sin{(\alpha x)} \sin{(\alpha y)},
|
||||
\end{equation}`
|
||||
|
||||
where :math:`\alpha` and :math:`\beta` are the abovementioned
|
||||
parameters. Their implementation is quite trivial: by using the class
|
||||
``torch.nn.Parameter`` we cam define all the learnable parameters we
|
||||
need, and they are managed by ``autograd`` module!
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
class SinSinAB(torch.nn.Module):
|
||||
""" """
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.alpha = torch.nn.Parameter(torch.tensor([1.0]))
|
||||
self.beta = torch.nn.Parameter(torch.tensor([1.0]))
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
t = (
|
||||
self.beta*torch.sin(self.alpha*x.extract(['x'])*torch.pi)*
|
||||
torch.sin(self.alpha*x.extract(['y'])*torch.pi)
|
||||
)
|
||||
return LabelTensor(t, ['b*sin(a*x)sin(a*y)'])
|
||||
|
||||
|
||||
# make model + solver + trainer
|
||||
model_lean= FeedForward(
|
||||
layers=[10, 10],
|
||||
func=Softplus,
|
||||
output_dimensions=len(problem.output_variables),
|
||||
input_dimensions=len(problem.input_variables)+1
|
||||
)
|
||||
pinn_lean = PINN(problem, model_lean, extra_features=[SinSinAB()], optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8})
|
||||
trainer_learn = Trainer(pinn_lean, max_epochs=1000, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
|
||||
|
||||
# train
|
||||
trainer_learn.train()
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
GPU available: False, used: False
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Training: 0it [00:00, ?it/s]
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=1000` reached.
|
||||
|
||||
|
||||
Umh, the final loss is not appreciabily better than previous model (with
|
||||
static extra features), despite the usage of learnable parameters. This
|
||||
is mainly due to the over-parametrization of the network: there are many
|
||||
parameter to optimize during the training, and the model in unable to
|
||||
understand automatically that only the parameters of the extra feature
|
||||
(and not the weights/bias of the FFN) should be tuned in order to fit
|
||||
our problem. A longer training can be helpful, but in this case the
|
||||
faster way to reach machine precision for solving the Poisson problem is
|
||||
removing all the hidden layers in the ``FeedForward``, keeping only the
|
||||
:math:`\alpha` and :math:`\beta` parameters of the extra feature.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
# make model + solver + trainer
|
||||
model_lean= FeedForward(
|
||||
layers=[],
|
||||
func=Softplus,
|
||||
output_dimensions=len(problem.output_variables),
|
||||
input_dimensions=len(problem.input_variables)+1
|
||||
)
|
||||
pinn_learn = PINN(problem, model_lean, extra_features=[SinSinAB()], optimizer_kwargs={'lr':0.006, 'weight_decay':1e-8})
|
||||
trainer_learn = Trainer(pinn_learn, max_epochs=1000, callbacks=[MetricTracker()], accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
|
||||
|
||||
# train
|
||||
trainer_learn.train()
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
GPU available: False, used: False
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Training: 0it [00:00, ?it/s]
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=1000` reached.
|
||||
|
||||
|
||||
In such a way, the model is able to reach a very high accuracy! Of
|
||||
course, this is a toy problem for understanding the usage of extra
|
||||
features: similar precision could be obtained if the extra features are
|
||||
very similar to the true solution. The analyzed Poisson problem shows a
|
||||
forcing term very close to the solution, resulting in a perfect problem
|
||||
to address with such an approach.
|
||||
|
||||
We conclude here by showing the graphical comparison of the unknown
|
||||
field and the loss trend for all the test cases presented here: the
|
||||
standard PINN, PINN with extra features, and PINN with learnable extra
|
||||
features.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
plotter.plot(trainer_learn)
|
||||
|
||||
|
||||
|
||||
.. image:: tutorial_files/tutorial_21_0.png
|
||||
|
||||
|
||||
Let us compare the training losses for the various types of training
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
plotter.plot_loss(trainer, label='Standard')
|
||||
plotter.plot_loss(trainer_feat, label='Static Features')
|
||||
plotter.plot_loss(trainer_learn, label='Learnable Features')
|
||||
|
||||
|
||||
|
||||
|
||||
.. image:: tutorial_files/tutorial_23_0.png
|
||||
|
||||
|
||||
What’s next?
|
||||
------------
|
||||
|
||||
Nice you have completed the two dimensional Poisson tutorial of
|
||||
**PINA**! There are multiple directions you can go now:
|
||||
|
||||
1. Train the network for longer or with different layer sizes and assert
|
||||
the finaly accuracy
|
||||
|
||||
2. Propose new types of extrafeatures and see how they affect the
|
||||
learning
|
||||
|
||||
3. Exploit extrafeature training in more complex problems
|
||||
|
||||
4. Many more…
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 43 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 35 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 35 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 36 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 32 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 38 KiB |
Reference in New Issue
Block a user