Tutorials and Doc (#191)
* Tutorial doc update * update doc tutorial * doc not compiling --------- Co-authored-by: Dario Coscia <dcoscia@euclide.maths.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
This commit is contained in:
225
docs/source/_rst/tutorials/tutorial5/tutorial.rst
Normal file
225
docs/source/_rst/tutorials/tutorial5/tutorial.rst
Normal file
@@ -0,0 +1,225 @@
|
||||
Tutorial: Two dimensional Darcy flow using the Fourier Neural Operator
|
||||
======================================================================
|
||||
|
||||
In this tutorial we are going to solve the Darcy flow problem in two
|
||||
dimensions, presented in `Fourier Neural Operator for Parametric Partial
|
||||
Differential Equation <https://openreview.net/pdf?id=c8P9NQVtmnO>`__.
|
||||
First of all we import the modules needed for the tutorial. Importing
|
||||
``scipy`` is needed for input output operations.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
# !pip install scipy # install scipy
|
||||
from scipy import io
|
||||
import torch
|
||||
from pina.model import FNO, FeedForward # let's import some models
|
||||
from pina import Condition
|
||||
from pina import LabelTensor
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.problem import AbstractProblem
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
Data Generation
|
||||
---------------
|
||||
|
||||
We will focus on solving the a specfic PDE, the **Darcy Flow** equation.
|
||||
The Darcy PDE is a second order, elliptic PDE with the following form:
|
||||
|
||||
.. math::
|
||||
|
||||
|
||||
-\nabla\cdot(k(x, y)\nabla u(x, y)) = f(x) \quad (x, y) \in D.
|
||||
|
||||
Specifically, :math:`u` is the flow pressure, :math:`k` is the
|
||||
permeability field and :math:`f` is the forcing function. The Darcy flow
|
||||
can parameterize a variety of systems including flow through porous
|
||||
media, elastic materials and heat conduction. Here you will define the
|
||||
domain as a 2D unit square Dirichlet boundary conditions. The dataset is
|
||||
taken from the authors original reference.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
# download the dataset
|
||||
data = io.loadmat("Data_Darcy.mat")
|
||||
|
||||
# extract data (we use only 100 data for train)
|
||||
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)[:100, ...]
|
||||
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)[:100, ...]
|
||||
k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)
|
||||
u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)
|
||||
x = torch.tensor(data['x'], dtype=torch.float)[0]
|
||||
y = torch.tensor(data['y'], dtype=torch.float)[0]
|
||||
|
||||
Let’s visualize some data
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
plt.subplot(1, 2, 1)
|
||||
plt.title('permeability')
|
||||
plt.imshow(k_train.squeeze(-1)[0])
|
||||
plt.subplot(1, 2, 2)
|
||||
plt.title('field solution')
|
||||
plt.imshow(u_train.squeeze(-1)[0])
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
.. image:: tutorial_files/tutorial_6_0.png
|
||||
|
||||
|
||||
We now create the neural operator class. It is a very simple class,
|
||||
inheriting from ``AbstractProblem``.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
class NeuralOperatorSolver(AbstractProblem):
|
||||
input_variables = ['u_0']
|
||||
output_variables = ['u']
|
||||
conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables),
|
||||
output_points=LabelTensor(u_train, input_variables))}
|
||||
|
||||
# make problem
|
||||
problem = NeuralOperatorSolver()
|
||||
|
||||
Solving the problem with a FeedForward Neural Network
|
||||
-----------------------------------------------------
|
||||
|
||||
We will first solve the problem using a Feedforward neural network. We
|
||||
will use the ``SupervisedSolver`` for solving the problem, since we are
|
||||
training using supervised learning.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
# make model
|
||||
model = FeedForward(input_dimensions=1, output_dimensions=1)
|
||||
|
||||
|
||||
# make solver
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
# make the trainer and train
|
||||
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
|
||||
trainer.train()
|
||||
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
GPU available: False, used: False
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Training: 0it [00:00, ?it/s]
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=100` reached.
|
||||
|
||||
|
||||
The final loss is pretty high… We can calculate the error by importing
|
||||
``LpLoss``.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
from pina.loss import LpLoss
|
||||
|
||||
# make the metric
|
||||
metric_err = LpLoss(relative=True)
|
||||
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
||||
print(f'Final error training {err:.2f}%')
|
||||
|
||||
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
|
||||
print(f'Final error testing {err:.2f}%')
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Final error training 56.24%
|
||||
Final error testing 55.95%
|
||||
|
||||
|
||||
Solving the problem with a Fuorier Neural Operator (FNO)
|
||||
--------------------------------------------------------
|
||||
|
||||
We will now move to solve the problem using a FNO. Since we are learning
|
||||
operator this approach is better suited, as we shall see.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
# make model
|
||||
lifting_net = torch.nn.Linear(1, 24)
|
||||
projecting_net = torch.nn.Linear(24, 1)
|
||||
model = FNO(lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
n_modes=16,
|
||||
dimensions=2,
|
||||
inner_size=24,
|
||||
padding=11)
|
||||
|
||||
|
||||
# make solver
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
# make the trainer and train
|
||||
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
|
||||
trainer.train()
|
||||
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
GPU available: False, used: False
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Training: 0it [00:00, ?it/s]
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=100` reached.
|
||||
|
||||
|
||||
We can clearly see that the final loss is lower. Let’s see in testing..
|
||||
Notice that the number of parameters is way higher than a
|
||||
``FeedForward`` network. We suggest to use GPU or TPU for a speed up in
|
||||
training, when many data samples are used.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
||||
print(f'Final error training {err:.2f}%')
|
||||
|
||||
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
|
||||
print(f'Final error testing {err:.2f}%')
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Final error training 10.86%
|
||||
Final error testing 12.77%
|
||||
|
||||
|
||||
As we can see the loss is way lower!
|
||||
|
||||
What’s next?
|
||||
------------
|
||||
|
||||
We have made a very simple example on how to use the ``FNO`` for
|
||||
learning neural operator. Currently in **PINA** we implement 1D/2D/3D
|
||||
cases. We suggest to extend the tutorial using more complex problems and
|
||||
train for longer, to see the full potential of neural operators.
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 14 KiB |
Reference in New Issue
Block a user