Tutorials and Doc (#191)

* Tutorial doc update
* update doc tutorial
* doc not compiling

---------

Co-authored-by: Dario Coscia <dcoscia@euclide.maths.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
This commit is contained in:
Nicola Demo
2023-10-23 12:48:09 +02:00
parent ac829aece9
commit 0c8072274e
93 changed files with 2306 additions and 1685 deletions

View File

@@ -0,0 +1,225 @@
Tutorial: Two dimensional Darcy flow using the Fourier Neural Operator
======================================================================
In this tutorial we are going to solve the Darcy flow problem in two
dimensions, presented in `Fourier Neural Operator for Parametric Partial
Differential Equation <https://openreview.net/pdf?id=c8P9NQVtmnO>`__.
First of all we import the modules needed for the tutorial. Importing
``scipy`` is needed for input output operations.
.. code:: ipython3
# !pip install scipy # install scipy
from scipy import io
import torch
from pina.model import FNO, FeedForward # let's import some models
from pina import Condition
from pina import LabelTensor
from pina.solvers import SupervisedSolver
from pina.trainer import Trainer
from pina.problem import AbstractProblem
import matplotlib.pyplot as plt
Data Generation
---------------
We will focus on solving the a specfic PDE, the **Darcy Flow** equation.
The Darcy PDE is a second order, elliptic PDE with the following form:
.. math::
-\nabla\cdot(k(x, y)\nabla u(x, y)) = f(x) \quad (x, y) \in D.
Specifically, :math:`u` is the flow pressure, :math:`k` is the
permeability field and :math:`f` is the forcing function. The Darcy flow
can parameterize a variety of systems including flow through porous
media, elastic materials and heat conduction. Here you will define the
domain as a 2D unit square Dirichlet boundary conditions. The dataset is
taken from the authors original reference.
.. code:: ipython3
# download the dataset
data = io.loadmat("Data_Darcy.mat")
# extract data (we use only 100 data for train)
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)[:100, ...]
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)[:100, ...]
k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)
u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)
x = torch.tensor(data['x'], dtype=torch.float)[0]
y = torch.tensor(data['y'], dtype=torch.float)[0]
Lets visualize some data
.. code:: ipython3
plt.subplot(1, 2, 1)
plt.title('permeability')
plt.imshow(k_train.squeeze(-1)[0])
plt.subplot(1, 2, 2)
plt.title('field solution')
plt.imshow(u_train.squeeze(-1)[0])
plt.show()
.. image:: tutorial_files/tutorial_6_0.png
We now create the neural operator class. It is a very simple class,
inheriting from ``AbstractProblem``.
.. code:: ipython3
class NeuralOperatorSolver(AbstractProblem):
input_variables = ['u_0']
output_variables = ['u']
conditions = {'data' : Condition(input_points=LabelTensor(k_train, input_variables),
output_points=LabelTensor(u_train, input_variables))}
# make problem
problem = NeuralOperatorSolver()
Solving the problem with a FeedForward Neural Network
-----------------------------------------------------
We will first solve the problem using a Feedforward neural network. We
will use the ``SupervisedSolver`` for solving the problem, since we are
training using supervised learning.
.. code:: ipython3
# make model
model = FeedForward(input_dimensions=1, output_dimensions=1)
# make solver
solver = SupervisedSolver(problem=problem, model=model)
# make the trainer and train
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
trainer.train()
.. parsed-literal::
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
.. parsed-literal::
Training: 0it [00:00, ?it/s]
.. parsed-literal::
`Trainer.fit` stopped: `max_epochs=100` reached.
The final loss is pretty high… We can calculate the error by importing
``LpLoss``.
.. code:: ipython3
from pina.loss import LpLoss
# make the metric
metric_err = LpLoss(relative=True)
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
print(f'Final error training {err:.2f}%')
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
print(f'Final error testing {err:.2f}%')
.. parsed-literal::
Final error training 56.24%
Final error testing 55.95%
Solving the problem with a Fuorier Neural Operator (FNO)
--------------------------------------------------------
We will now move to solve the problem using a FNO. Since we are learning
operator this approach is better suited, as we shall see.
.. code:: ipython3
# make model
lifting_net = torch.nn.Linear(1, 24)
projecting_net = torch.nn.Linear(24, 1)
model = FNO(lifting_net=lifting_net,
projecting_net=projecting_net,
n_modes=16,
dimensions=2,
inner_size=24,
padding=11)
# make solver
solver = SupervisedSolver(problem=problem, model=model)
# make the trainer and train
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
trainer.train()
.. parsed-literal::
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
.. parsed-literal::
Training: 0it [00:00, ?it/s]
.. parsed-literal::
`Trainer.fit` stopped: `max_epochs=100` reached.
We can clearly see that the final loss is lower. Lets see in testing..
Notice that the number of parameters is way higher than a
``FeedForward`` network. We suggest to use GPU or TPU for a speed up in
training, when many data samples are used.
.. code:: ipython3
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
print(f'Final error training {err:.2f}%')
err = float(metric_err(u_test.squeeze(-1), solver.models[0](k_test).squeeze(-1)).mean())*100
print(f'Final error testing {err:.2f}%')
.. parsed-literal::
Final error training 10.86%
Final error testing 12.77%
As we can see the loss is way lower!
Whats next?
------------
We have made a very simple example on how to use the ``FNO`` for
learning neural operator. Currently in **PINA** we implement 1D/2D/3D
cases. We suggest to extend the tutorial using more complex problems and
train for longer, to see the full potential of neural operators.

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB