Tutorials and Doc (#191)
* Tutorial doc update * update doc tutorial * doc not compiling --------- Co-authored-by: Dario Coscia <dcoscia@euclide.maths.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
This commit is contained in:
35
tutorials/tutorial5/tutorial.py
vendored
35
tutorials/tutorial5/tutorial.py
vendored
@@ -1,14 +1,15 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# # Tutorial 5: Fourier Neural Operator Learning
|
||||
# # Tutorial: Two dimensional Darcy flow using the Fourier Neural Operator
|
||||
|
||||
# In this tutorial we are going to solve the Darcy flow 2d problem, presented in [Fourier Neural Operator for
|
||||
# Parametric Partial Differential Equation](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input output operation, run `pip install scipy` for installing it.
|
||||
# In this tutorial we are going to solve the Darcy flow problem in two dimensions, presented in [*Fourier Neural Operator for
|
||||
# Parametric Partial Differential Equation*](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input output operations.
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
# !pip install scipy # install scipy
|
||||
from scipy import io
|
||||
import torch
|
||||
from pina.model import FNO, FeedForward # let's import some models
|
||||
@@ -31,15 +32,15 @@ import matplotlib.pyplot as plt
|
||||
# Specifically, $u$ is the flow pressure, $k$ is the permeability field and $f$ is the forcing function. The Darcy flow can parameterize a variety of systems including flow through porous media, elastic materials and heat conduction. Here you will define the domain as a 2D unit square Dirichlet boundary conditions. The dataset is taken from the authors original reference.
|
||||
#
|
||||
|
||||
# In[2]:
|
||||
# In[17]:
|
||||
|
||||
|
||||
# download the dataset
|
||||
data = io.loadmat("Data_Darcy.mat")
|
||||
|
||||
# extract data
|
||||
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)
|
||||
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)
|
||||
# extract data (we use only 100 data for train)
|
||||
k_train = torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1)[:100, ...]
|
||||
u_train = torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1)[:100, ...]
|
||||
k_test = torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1)
|
||||
u_test= torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1)
|
||||
x = torch.tensor(data['x'], dtype=torch.float)[0]
|
||||
@@ -48,7 +49,7 @@ y = torch.tensor(data['y'], dtype=torch.float)[0]
|
||||
|
||||
# Let's visualize some data
|
||||
|
||||
# In[3]:
|
||||
# In[18]:
|
||||
|
||||
|
||||
plt.subplot(1, 2, 1)
|
||||
@@ -62,7 +63,7 @@ plt.show()
|
||||
|
||||
# We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`.
|
||||
|
||||
# In[4]:
|
||||
# In[19]:
|
||||
|
||||
|
||||
class NeuralOperatorSolver(AbstractProblem):
|
||||
@@ -79,24 +80,24 @@ problem = NeuralOperatorSolver()
|
||||
#
|
||||
# We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning.
|
||||
|
||||
# In[5]:
|
||||
# In[20]:
|
||||
|
||||
|
||||
# make model
|
||||
model=FeedForward(input_dimensions=1, output_dimensions=1)
|
||||
model = FeedForward(input_dimensions=1, output_dimensions=1)
|
||||
|
||||
|
||||
# make solver
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
# make the trainer and train
|
||||
trainer = Trainer(solver=solver, max_epochs=100)
|
||||
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
|
||||
trainer.train()
|
||||
|
||||
|
||||
# The final loss is pretty high... We can calculate the error by importing `LpLoss`.
|
||||
|
||||
# In[6]:
|
||||
# In[21]:
|
||||
|
||||
|
||||
from pina.loss import LpLoss
|
||||
@@ -116,7 +117,7 @@ print(f'Final error testing {err:.2f}%')
|
||||
#
|
||||
# We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see.
|
||||
|
||||
# In[7]:
|
||||
# In[22]:
|
||||
|
||||
|
||||
# make model
|
||||
@@ -134,13 +135,13 @@ model = FNO(lifting_net=lifting_net,
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
# make the trainer and train
|
||||
trainer = Trainer(solver=solver, max_epochs=20)
|
||||
trainer = Trainer(solver=solver, max_epochs=100, accelerator='cpu', enable_model_summary=False) # we train on CPU and avoid model summary at beginning of training (optional)
|
||||
trainer.train()
|
||||
|
||||
|
||||
# We can clearly see that with 1/3 of the total epochs the loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training.
|
||||
# We can clearly see that the final loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training, when many data samples are used.
|
||||
|
||||
# In[8]:
|
||||
# In[23]:
|
||||
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), solver.models[0](k_train).squeeze(-1)).mean())*100
|
||||
|
||||
Reference in New Issue
Block a user