update plotter
This commit is contained in:
committed by
Nicola Demo
parent
934ae409ff
commit
0d38de5afe
@@ -28,8 +28,8 @@ Build a PINA problem
|
||||
Problem definition in the **PINA** framework is done by building a
|
||||
python ``class``, which inherits from one or more problem classes
|
||||
(``SpatialProblem``, ``TimeDependentProblem``, ``ParametricProblem``, …)
|
||||
depending on the nature of the problem. Below is an example. Consider the following
|
||||
simple Ordinary Differential Equation:
|
||||
depending on the nature of the problem. Below is an example: ### Simple
|
||||
Ordinary Differential Equation Consider the following:
|
||||
|
||||
.. math::
|
||||
|
||||
@@ -49,7 +49,7 @@ our ``Problem`` class is going to be inherited from the
|
||||
.. code:: python
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina import CartesianProblem
|
||||
from pina.geometry import CartesianProblem
|
||||
|
||||
class SimpleODE(SpatialProblem):
|
||||
|
||||
@@ -73,7 +73,7 @@ What about if our equation is also time dependent? In this case, our
|
||||
.. code:: ipython3
|
||||
|
||||
from pina.problem import SpatialProblem, TimeDependentProblem
|
||||
from pina import CartesianDomain
|
||||
from pina.geometry import CartesianDomain
|
||||
|
||||
class TimeSpaceODE(SpatialProblem, TimeDependentProblem):
|
||||
|
||||
@@ -215,26 +215,26 @@ calling the attribute ``input_pts`` of the problem
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Input points: {'x0': LabelTensor([[[0.]]]), 'D': LabelTensor([[[0.8633]],
|
||||
[[0.4009]],
|
||||
[[0.6489]],
|
||||
[[0.9278]],
|
||||
[[0.3975]],
|
||||
[[0.1484]],
|
||||
[[0.9632]],
|
||||
[[0.5485]],
|
||||
[[0.2984]],
|
||||
[[0.5643]],
|
||||
[[0.0368]],
|
||||
[[0.7847]],
|
||||
[[0.4741]],
|
||||
[[0.6957]],
|
||||
[[0.3281]],
|
||||
[[0.0958]],
|
||||
[[0.1847]],
|
||||
[[0.2232]],
|
||||
[[0.8099]],
|
||||
[[0.7304]]])}
|
||||
Input points: {'x0': LabelTensor([[[0.]]]), 'D': LabelTensor([[[0.7644]],
|
||||
[[0.2028]],
|
||||
[[0.1789]],
|
||||
[[0.4294]],
|
||||
[[0.3239]],
|
||||
[[0.6531]],
|
||||
[[0.1406]],
|
||||
[[0.6062]],
|
||||
[[0.4969]],
|
||||
[[0.7429]],
|
||||
[[0.8681]],
|
||||
[[0.3800]],
|
||||
[[0.5357]],
|
||||
[[0.0152]],
|
||||
[[0.9679]],
|
||||
[[0.8101]],
|
||||
[[0.0662]],
|
||||
[[0.9095]],
|
||||
[[0.2503]],
|
||||
[[0.5580]]])}
|
||||
Input points labels: ['x']
|
||||
|
||||
|
||||
@@ -271,7 +271,8 @@ If you want to track the metric by yourself without a logger, use
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
from pina import PINN, Trainer
|
||||
from pina import Trainer
|
||||
from pina.solvers import PINN
|
||||
from pina.model import FeedForward
|
||||
from pina.callbacks import MetricTracker
|
||||
|
||||
@@ -300,12 +301,11 @@ If you want to track the metric by yourself without a logger, use
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
Missing logger folder: /Users/dariocoscia/Desktop/PINA/tutorials/tutorial1/lightning_logs
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 1499: : 1it [00:00, 316.24it/s, v_num=0, mean_loss=5.39e-5, x0_loss=1.26e-6, D_loss=0.000106]
|
||||
Epoch 1499: : 1it [00:00, 272.55it/s, v_num=3, x0_loss=7.71e-6, D_loss=0.000734, mean_loss=0.000371]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
@@ -314,7 +314,7 @@ If you want to track the metric by yourself without a logger, use
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 1499: : 1it [00:00, 166.89it/s, v_num=0, mean_loss=5.39e-5, x0_loss=1.26e-6, D_loss=0.000106]
|
||||
Epoch 1499: : 1it [00:00, 167.14it/s, v_num=3, x0_loss=7.71e-6, D_loss=0.000734, mean_loss=0.000371]
|
||||
|
||||
|
||||
After the training we can inspect trainer logged metrics (by default
|
||||
@@ -332,9 +332,9 @@ loss can be accessed by ``trainer.logged_metrics``
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
{'mean_loss': tensor(5.3852e-05),
|
||||
'x0_loss': tensor(1.2636e-06),
|
||||
'D_loss': tensor(0.0001)}
|
||||
{'x0_loss': tensor(7.7149e-06),
|
||||
'D_loss': tensor(0.0007),
|
||||
'mean_loss': tensor(0.0004)}
|
||||
|
||||
|
||||
|
||||
@@ -362,7 +362,7 @@ indistinguishable. We can also plot easily the loss:
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
pl.plot_loss(trainer=trainer, label = 'mean_loss', logy=True)
|
||||
pl.plot_loss(trainer=trainer, label = 'mean_loss', logy=True)
|
||||
|
||||
|
||||
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 10 KiB After Width: | Height: | Size: 10 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 30 KiB After Width: | Height: | Size: 31 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 19 KiB |
Reference in New Issue
Block a user