update plotter
@@ -31,16 +31,12 @@ The problem definition
|
||||
----------------------
|
||||
|
||||
The two-dimensional Poisson problem is mathematically written as:
|
||||
|
||||
.. math::
|
||||
\begin{equation}
|
||||
\begin{cases}
|
||||
\Delta u = \sin{(\pi x)} \sin{(\pi y)} \text{ in } D, \\
|
||||
u = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4,
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
|
||||
where :math:`D` is a square domain :math:`[0,1]^2`, and
|
||||
:raw-latex:`\begin{equation}
|
||||
\begin{cases}
|
||||
\Delta u = \sin{(\pi x)} \sin{(\pi y)} \text{ in } D, \\
|
||||
u = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4,
|
||||
\end{cases}
|
||||
\end{equation}` where :math:`D` is a square domain :math:`[0,1]^2`, and
|
||||
:math:`\Gamma_i`, with :math:`i=1,...,4`, are the boundaries of the
|
||||
square.
|
||||
|
||||
@@ -127,7 +123,7 @@ These parameters can be modified as desired. We use the
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 999: : 1it [00:00, 152.98it/s, v_num=9, mean_loss=0.000239, D_loss=0.000793, gamma1_loss=8.51e-5, gamma2_loss=0.000103, gamma3_loss=0.000122, gamma4_loss=9.14e-5]
|
||||
Epoch 999: : 1it [00:00, 158.53it/s, v_num=3, gamma1_loss=5.29e-5, gamma2_loss=4.09e-5, gamma3_loss=4.73e-5, gamma4_loss=4.18e-5, D_loss=0.00134, mean_loss=0.000304]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
@@ -136,7 +132,7 @@ These parameters can be modified as desired. We use the
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 999: : 1it [00:00, 119.21it/s, v_num=9, mean_loss=0.000239, D_loss=0.000793, gamma1_loss=8.51e-5, gamma2_loss=0.000103, gamma3_loss=0.000122, gamma4_loss=9.14e-5]
|
||||
Epoch 999: : 1it [00:00, 105.33it/s, v_num=3, gamma1_loss=5.29e-5, gamma2_loss=4.09e-5, gamma3_loss=4.73e-5, gamma4_loss=4.18e-5, D_loss=0.00134, mean_loss=0.000304]
|
||||
|
||||
|
||||
Now the ``Plotter`` class is used to plot the results. The solution
|
||||
@@ -162,10 +158,9 @@ is now defined, with an additional input variable, named extra-feature,
|
||||
which coincides with the forcing term in the Laplace equation. The set
|
||||
of input variables to the neural network is:
|
||||
|
||||
.. math::
|
||||
\begin{equation}
|
||||
[x, y, k(x, y)], \text{ with } k(x, y)=\sin{(\pi x)}\sin{(\pi y)},
|
||||
\end{equation}
|
||||
:raw-latex:`\begin{equation}
|
||||
[x, y, k(x, y)], \text{ with } k(x, y)=\sin{(\pi x)}\sin{(\pi y)},
|
||||
\end{equation}`
|
||||
|
||||
where :math:`x` and :math:`y` are the spatial coordinates and
|
||||
:math:`k(x, y)` is the added feature.
|
||||
@@ -219,7 +214,7 @@ new extra feature.
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 999: : 1it [00:00, 119.36it/s, v_num=10, mean_loss=8.97e-7, D_loss=4.43e-6, gamma1_loss=1.37e-8, gamma2_loss=1.68e-8, gamma3_loss=1.22e-8, gamma4_loss=1.77e-8]
|
||||
Epoch 999: : 1it [00:00, 111.88it/s, v_num=4, gamma1_loss=2.54e-7, gamma2_loss=2.17e-7, gamma3_loss=1.94e-7, gamma4_loss=2.69e-7, D_loss=9.2e-6, mean_loss=2.03e-6]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
@@ -228,7 +223,7 @@ new extra feature.
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 999: : 1it [00:00, 95.23it/s, v_num=10, mean_loss=8.97e-7, D_loss=4.43e-6, gamma1_loss=1.37e-8, gamma2_loss=1.68e-8, gamma3_loss=1.22e-8, gamma4_loss=1.77e-8]
|
||||
Epoch 999: : 1it [00:00, 85.62it/s, v_num=4, gamma1_loss=2.54e-7, gamma2_loss=2.17e-7, gamma3_loss=1.94e-7, gamma4_loss=2.69e-7, D_loss=9.2e-6, mean_loss=2.03e-6]
|
||||
|
||||
|
||||
The predicted and exact solutions and the error between them are
|
||||
@@ -254,10 +249,9 @@ Another way to exploit the extra features is the addition of learnable
|
||||
parameter inside them. In this way, the added parameters are learned
|
||||
during the training phase of the neural network. In this case, we use:
|
||||
|
||||
.. math::
|
||||
\begin{equation}
|
||||
k(x, \mathbf{y}) = \beta \sin{(\alpha x)} \sin{(\alpha y)},
|
||||
\end{equation}
|
||||
:raw-latex:`\begin{equation}
|
||||
k(x, \mathbf{y}) = \beta \sin{(\alpha x)} \sin{(\alpha y)},
|
||||
\end{equation}`
|
||||
|
||||
where :math:`\alpha` and :math:`\beta` are the abovementioned
|
||||
parameters. Their implementation is quite trivial: by using the class
|
||||
@@ -306,7 +300,7 @@ need, and they are managed by ``autograd`` module!
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 999: : 1it [00:00, 103.14it/s, v_num=14, mean_loss=1.39e-6, D_loss=6.04e-6, gamma1_loss=4.19e-7, gamma2_loss=2.8e-8, gamma3_loss=4.05e-7, gamma4_loss=3.49e-8]
|
||||
Epoch 999: : 1it [00:00, 119.29it/s, v_num=5, gamma1_loss=3.26e-8, gamma2_loss=7.84e-8, gamma3_loss=1.13e-7, gamma4_loss=3.02e-8, D_loss=2.66e-6, mean_loss=5.82e-7]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
@@ -315,7 +309,7 @@ need, and they are managed by ``autograd`` module!
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 999: : 1it [00:00, 84.50it/s, v_num=14, mean_loss=1.39e-6, D_loss=6.04e-6, gamma1_loss=4.19e-7, gamma2_loss=2.8e-8, gamma3_loss=4.05e-7, gamma4_loss=3.49e-8]
|
||||
Epoch 999: : 1it [00:00, 85.94it/s, v_num=5, gamma1_loss=3.26e-8, gamma2_loss=7.84e-8, gamma3_loss=1.13e-7, gamma4_loss=3.02e-8, D_loss=2.66e-6, mean_loss=5.82e-7]
|
||||
|
||||
|
||||
Umh, the final loss is not appreciabily better than previous model (with
|
||||
@@ -355,7 +349,7 @@ removing all the hidden layers in the ``FeedForward``, keeping only the
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 999: : 1it [00:00, 130.55it/s, v_num=17, mean_loss=1.34e-14, D_loss=6.7e-14, gamma1_loss=5.13e-17, gamma2_loss=9.68e-18, gamma3_loss=5.14e-17, gamma4_loss=9.75e-18]
|
||||
Epoch 0: : 0it [00:00, ?it/s]Epoch 999: : 1it [00:00, 131.20it/s, v_num=6, gamma1_loss=2.55e-16, gamma2_loss=4.76e-17, gamma3_loss=2.55e-16, gamma4_loss=4.76e-17, D_loss=1.74e-13, mean_loss=3.5e-14]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
@@ -364,7 +358,7 @@ removing all the hidden layers in the ``FeedForward``, keeping only the
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 999: : 1it [00:00, 104.91it/s, v_num=17, mean_loss=1.34e-14, D_loss=6.7e-14, gamma1_loss=5.13e-17, gamma2_loss=9.68e-18, gamma3_loss=5.14e-17, gamma4_loss=9.75e-18]
|
||||
Epoch 999: : 1it [00:00, 98.81it/s, v_num=6, gamma1_loss=2.55e-16, gamma2_loss=4.76e-17, gamma3_loss=2.55e-16, gamma4_loss=4.76e-17, D_loss=1.74e-13, mean_loss=3.5e-14]
|
||||
|
||||
|
||||
In such a way, the model is able to reach a very high accuracy! Of
|
||||
|
||||
|
Before Width: | Height: | Size: 56 KiB After Width: | Height: | Size: 50 KiB |
|
Before Width: | Height: | Size: 77 KiB After Width: | Height: | Size: 61 KiB |
|
Before Width: | Height: | Size: 31 KiB After Width: | Height: | Size: 28 KiB |
|
Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 57 KiB |