update plotter

This commit is contained in:
Dario Coscia
2023-11-09 18:20:51 +01:00
committed by Nicola Demo
parent 934ae409ff
commit 0d38de5afe
21 changed files with 171 additions and 165 deletions

View File

@@ -28,8 +28,8 @@ Build a PINA problem
Problem definition in the **PINA** framework is done by building a
python ``class``, which inherits from one or more problem classes
(``SpatialProblem``, ``TimeDependentProblem``, ``ParametricProblem``, …)
depending on the nature of the problem. Below is an example. Consider the following
simple Ordinary Differential Equation:
depending on the nature of the problem. Below is an example: ### Simple
Ordinary Differential Equation Consider the following:
.. math::
@@ -49,7 +49,7 @@ our ``Problem`` class is going to be inherited from the
.. code:: python
from pina.problem import SpatialProblem
from pina import CartesianProblem
from pina.geometry import CartesianProblem
class SimpleODE(SpatialProblem):
@@ -73,7 +73,7 @@ What about if our equation is also time dependent? In this case, our
.. code:: ipython3
from pina.problem import SpatialProblem, TimeDependentProblem
from pina import CartesianDomain
from pina.geometry import CartesianDomain
class TimeSpaceODE(SpatialProblem, TimeDependentProblem):
@@ -215,26 +215,26 @@ calling the attribute ``input_pts`` of the problem
.. parsed-literal::
Input points: {'x0': LabelTensor([[[0.]]]), 'D': LabelTensor([[[0.8633]],
[[0.4009]],
[[0.6489]],
[[0.9278]],
[[0.3975]],
[[0.1484]],
[[0.9632]],
[[0.5485]],
[[0.2984]],
[[0.5643]],
[[0.0368]],
[[0.7847]],
[[0.4741]],
[[0.6957]],
[[0.3281]],
[[0.0958]],
[[0.1847]],
[[0.2232]],
[[0.8099]],
[[0.7304]]])}
Input points: {'x0': LabelTensor([[[0.]]]), 'D': LabelTensor([[[0.7644]],
[[0.2028]],
[[0.1789]],
[[0.4294]],
[[0.3239]],
[[0.6531]],
[[0.1406]],
[[0.6062]],
[[0.4969]],
[[0.7429]],
[[0.8681]],
[[0.3800]],
[[0.5357]],
[[0.0152]],
[[0.9679]],
[[0.8101]],
[[0.0662]],
[[0.9095]],
[[0.2503]],
[[0.5580]]])}
Input points labels: ['x']
@@ -271,7 +271,8 @@ If you want to track the metric by yourself without a logger, use
.. code:: ipython3
from pina import PINN, Trainer
from pina import Trainer
from pina.solvers import PINN
from pina.model import FeedForward
from pina.callbacks import MetricTracker
@@ -300,12 +301,11 @@ If you want to track the metric by yourself without a logger, use
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Missing logger folder: /Users/dariocoscia/Desktop/PINA/tutorials/tutorial1/lightning_logs
.. parsed-literal::
Epoch 1499: : 1it [00:00, 316.24it/s, v_num=0, mean_loss=5.39e-5, x0_loss=1.26e-6, D_loss=0.000106]
Epoch 1499: : 1it [00:00, 272.55it/s, v_num=3, x0_loss=7.71e-6, D_loss=0.000734, mean_loss=0.000371]
.. parsed-literal::
@@ -314,7 +314,7 @@ If you want to track the metric by yourself without a logger, use
.. parsed-literal::
Epoch 1499: : 1it [00:00, 166.89it/s, v_num=0, mean_loss=5.39e-5, x0_loss=1.26e-6, D_loss=0.000106]
Epoch 1499: : 1it [00:00, 167.14it/s, v_num=3, x0_loss=7.71e-6, D_loss=0.000734, mean_loss=0.000371]
After the training we can inspect trainer logged metrics (by default
@@ -332,9 +332,9 @@ loss can be accessed by ``trainer.logged_metrics``
.. parsed-literal::
{'mean_loss': tensor(5.3852e-05),
'x0_loss': tensor(1.2636e-06),
'D_loss': tensor(0.0001)}
{'x0_loss': tensor(7.7149e-06),
'D_loss': tensor(0.0007),
'mean_loss': tensor(0.0004)}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

After

Width:  |  Height:  |  Size: 19 KiB

View File

@@ -31,16 +31,12 @@ The problem definition
----------------------
The two-dimensional Poisson problem is mathematically written as:
.. math::
\begin{equation}
\begin{cases}
\Delta u = \sin{(\pi x)} \sin{(\pi y)} \text{ in } D, \\
u = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4,
\end{cases}
\end{equation}
where :math:`D` is a square domain :math:`[0,1]^2`, and
:raw-latex:`\begin{equation}
\begin{cases}
\Delta u = \sin{(\pi x)} \sin{(\pi y)} \text{ in } D, \\
u = 0 \text{ on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4,
\end{cases}
\end{equation}` where :math:`D` is a square domain :math:`[0,1]^2`, and
:math:`\Gamma_i`, with :math:`i=1,...,4`, are the boundaries of the
square.
@@ -127,7 +123,7 @@ These parameters can be modified as desired. We use the
.. parsed-literal::
Epoch 999: : 1it [00:00, 152.98it/s, v_num=9, mean_loss=0.000239, D_loss=0.000793, gamma1_loss=8.51e-5, gamma2_loss=0.000103, gamma3_loss=0.000122, gamma4_loss=9.14e-5]
Epoch 999: : 1it [00:00, 158.53it/s, v_num=3, gamma1_loss=5.29e-5, gamma2_loss=4.09e-5, gamma3_loss=4.73e-5, gamma4_loss=4.18e-5, D_loss=0.00134, mean_loss=0.000304]
.. parsed-literal::
@@ -136,7 +132,7 @@ These parameters can be modified as desired. We use the
.. parsed-literal::
Epoch 999: : 1it [00:00, 119.21it/s, v_num=9, mean_loss=0.000239, D_loss=0.000793, gamma1_loss=8.51e-5, gamma2_loss=0.000103, gamma3_loss=0.000122, gamma4_loss=9.14e-5]
Epoch 999: : 1it [00:00, 105.33it/s, v_num=3, gamma1_loss=5.29e-5, gamma2_loss=4.09e-5, gamma3_loss=4.73e-5, gamma4_loss=4.18e-5, D_loss=0.00134, mean_loss=0.000304]
Now the ``Plotter`` class is used to plot the results. The solution
@@ -162,10 +158,9 @@ is now defined, with an additional input variable, named extra-feature,
which coincides with the forcing term in the Laplace equation. The set
of input variables to the neural network is:
.. math::
\begin{equation}
[x, y, k(x, y)], \text{ with } k(x, y)=\sin{(\pi x)}\sin{(\pi y)},
\end{equation}
:raw-latex:`\begin{equation}
[x, y, k(x, y)], \text{ with } k(x, y)=\sin{(\pi x)}\sin{(\pi y)},
\end{equation}`
where :math:`x` and :math:`y` are the spatial coordinates and
:math:`k(x, y)` is the added feature.
@@ -219,7 +214,7 @@ new extra feature.
.. parsed-literal::
Epoch 999: : 1it [00:00, 119.36it/s, v_num=10, mean_loss=8.97e-7, D_loss=4.43e-6, gamma1_loss=1.37e-8, gamma2_loss=1.68e-8, gamma3_loss=1.22e-8, gamma4_loss=1.77e-8]
Epoch 999: : 1it [00:00, 111.88it/s, v_num=4, gamma1_loss=2.54e-7, gamma2_loss=2.17e-7, gamma3_loss=1.94e-7, gamma4_loss=2.69e-7, D_loss=9.2e-6, mean_loss=2.03e-6]
.. parsed-literal::
@@ -228,7 +223,7 @@ new extra feature.
.. parsed-literal::
Epoch 999: : 1it [00:00, 95.23it/s, v_num=10, mean_loss=8.97e-7, D_loss=4.43e-6, gamma1_loss=1.37e-8, gamma2_loss=1.68e-8, gamma3_loss=1.22e-8, gamma4_loss=1.77e-8]
Epoch 999: : 1it [00:00, 85.62it/s, v_num=4, gamma1_loss=2.54e-7, gamma2_loss=2.17e-7, gamma3_loss=1.94e-7, gamma4_loss=2.69e-7, D_loss=9.2e-6, mean_loss=2.03e-6]
The predicted and exact solutions and the error between them are
@@ -254,10 +249,9 @@ Another way to exploit the extra features is the addition of learnable
parameter inside them. In this way, the added parameters are learned
during the training phase of the neural network. In this case, we use:
.. math::
\begin{equation}
k(x, \mathbf{y}) = \beta \sin{(\alpha x)} \sin{(\alpha y)},
\end{equation}
:raw-latex:`\begin{equation}
k(x, \mathbf{y}) = \beta \sin{(\alpha x)} \sin{(\alpha y)},
\end{equation}`
where :math:`\alpha` and :math:`\beta` are the abovementioned
parameters. Their implementation is quite trivial: by using the class
@@ -306,7 +300,7 @@ need, and they are managed by ``autograd`` module!
.. parsed-literal::
Epoch 999: : 1it [00:00, 103.14it/s, v_num=14, mean_loss=1.39e-6, D_loss=6.04e-6, gamma1_loss=4.19e-7, gamma2_loss=2.8e-8, gamma3_loss=4.05e-7, gamma4_loss=3.49e-8]
Epoch 999: : 1it [00:00, 119.29it/s, v_num=5, gamma1_loss=3.26e-8, gamma2_loss=7.84e-8, gamma3_loss=1.13e-7, gamma4_loss=3.02e-8, D_loss=2.66e-6, mean_loss=5.82e-7]
.. parsed-literal::
@@ -315,7 +309,7 @@ need, and they are managed by ``autograd`` module!
.. parsed-literal::
Epoch 999: : 1it [00:00, 84.50it/s, v_num=14, mean_loss=1.39e-6, D_loss=6.04e-6, gamma1_loss=4.19e-7, gamma2_loss=2.8e-8, gamma3_loss=4.05e-7, gamma4_loss=3.49e-8]
Epoch 999: : 1it [00:00, 85.94it/s, v_num=5, gamma1_loss=3.26e-8, gamma2_loss=7.84e-8, gamma3_loss=1.13e-7, gamma4_loss=3.02e-8, D_loss=2.66e-6, mean_loss=5.82e-7]
Umh, the final loss is not appreciabily better than previous model (with
@@ -355,7 +349,7 @@ removing all the hidden layers in the ``FeedForward``, keeping only the
.. parsed-literal::
Epoch 999: : 1it [00:00, 130.55it/s, v_num=17, mean_loss=1.34e-14, D_loss=6.7e-14, gamma1_loss=5.13e-17, gamma2_loss=9.68e-18, gamma3_loss=5.14e-17, gamma4_loss=9.75e-18]
Epoch 0: : 0it [00:00, ?it/s]Epoch 999: : 1it [00:00, 131.20it/s, v_num=6, gamma1_loss=2.55e-16, gamma2_loss=4.76e-17, gamma3_loss=2.55e-16, gamma4_loss=4.76e-17, D_loss=1.74e-13, mean_loss=3.5e-14]
.. parsed-literal::
@@ -364,7 +358,7 @@ removing all the hidden layers in the ``FeedForward``, keeping only the
.. parsed-literal::
Epoch 999: : 1it [00:00, 104.91it/s, v_num=17, mean_loss=1.34e-14, D_loss=6.7e-14, gamma1_loss=5.13e-17, gamma2_loss=9.68e-18, gamma3_loss=5.14e-17, gamma4_loss=9.75e-18]
Epoch 999: : 1it [00:00, 98.81it/s, v_num=6, gamma1_loss=2.55e-16, gamma2_loss=4.76e-17, gamma3_loss=2.55e-16, gamma4_loss=4.76e-17, D_loss=1.74e-13, mean_loss=3.5e-14]
In such a way, the model is able to reach a very high accuracy! Of

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 77 KiB

After

Width:  |  Height:  |  Size: 61 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

After

Width:  |  Height:  |  Size: 57 KiB

View File

@@ -25,14 +25,13 @@ The problem definition
The problem is written in the following form:
.. math::
\begin{equation}
\begin{cases}
\Delta u(x,y,t) = \frac{\partial^2}{\partial t^2} u(x,y,t) \quad \text{in } D, \\\\
u(x, y, t=0) = \sin(\pi x)\sin(\pi y), \\\\
u(x, y, t) = 0 \quad \text{on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4,
\end{cases}
\end{equation}
:raw-latex:`\begin{equation}
\begin{cases}
\Delta u(x,y,t) = \frac{\partial^2}{\partial t^2} u(x,y,t) \quad \text{in } D, \\\\
u(x, y, t=0) = \sin(\pi x)\sin(\pi y), \\\\
u(x, y, t) = 0 \quad \text{on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4,
\end{cases}
\end{equation}`
where :math:`D` is a square domain :math:`[0,1]^2`, and
:math:`\Gamma_i`, with :math:`i=1,...,4`, are the boundaries of the
@@ -149,7 +148,7 @@ approximately 3 minutes.
.. parsed-literal::
Epoch 999: : 1it [00:00, 62.13it/s, v_num=0, mean_loss=0.0268, D_loss=0.0397, t0_loss=0.121, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000]
Epoch 999: : 1it [00:00, 84.47it/s, v_num=0, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000, t0_loss=0.0419, D_loss=0.0307, mean_loss=0.0121]
.. parsed-literal::
@@ -158,7 +157,7 @@ approximately 3 minutes.
.. parsed-literal::
Epoch 999: : 1it [00:00, 53.88it/s, v_num=0, mean_loss=0.0268, D_loss=0.0397, t0_loss=0.121, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000]
Epoch 999: : 1it [00:00, 68.69it/s, v_num=0, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000, t0_loss=0.0419, D_loss=0.0307, mean_loss=0.0121]
Notice that the loss on the boundaries of the spatial domain is exactly
@@ -263,7 +262,7 @@ Now lets train with the same configuration as thre previous test
.. parsed-literal::
Epoch 999: : 1it [00:00, 48.54it/s, v_num=1, mean_loss=1.48e-8, D_loss=8.89e-8, t0_loss=0.000, gamma1_loss=2.06e-15, gamma2_loss=0.000, gamma3_loss=2.1e-15, gamma4_loss=0.000]
Epoch 0: : 0it [00:00, ?it/s]Epoch 999: : 1it [00:00, 52.10it/s, v_num=1, gamma1_loss=1.97e-15, gamma2_loss=0.000, gamma3_loss=2.14e-15, gamma4_loss=0.000, t0_loss=0.000, D_loss=1.25e-7, mean_loss=2.09e-8]
.. parsed-literal::
@@ -272,7 +271,7 @@ Now lets train with the same configuration as thre previous test
.. parsed-literal::
Epoch 999: : 1it [00:00, 43.25it/s, v_num=1, mean_loss=1.48e-8, D_loss=8.89e-8, t0_loss=0.000, gamma1_loss=2.06e-15, gamma2_loss=0.000, gamma3_loss=2.1e-15, gamma4_loss=0.000]
Epoch 999: : 1it [00:00, 45.78it/s, v_num=1, gamma1_loss=1.97e-15, gamma2_loss=0.000, gamma3_loss=2.14e-15, gamma4_loss=0.000, t0_loss=0.000, D_loss=1.25e-7, mean_loss=2.09e-8]
We can clearly see that the loss is way lower now. Lets plot the

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 53 KiB

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 52 KiB

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 52 KiB

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

After

Width:  |  Height:  |  Size: 48 KiB

View File

@@ -88,7 +88,6 @@ class Plotter:
truth_output = truth_solution(pts).float()
ax.plot(pts, truth_output.detach(), label='True solution', **kwargs)
plt.xlabel(pts.labels[0])
plt.ylabel(pred.labels[0])
plt.legend()
plt.show()
@@ -120,7 +119,7 @@ class Plotter:
pred_output = pred.reshape(res, res)
if truth_solution:
truth_output = truth_solution(pts).float().reshape(res, res)
truth_output = truth_solution(pts).float().reshape(res, res).as_subclass(torch.Tensor)
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(16, 6))
cb = getattr(ax[0], method)(*grids, pred_output.cpu().detach(),
@@ -157,8 +156,7 @@ class Plotter:
:param SolverInterface solver: The ``SolverInterface`` object instance.
:param list(str) components: The output variable to plot. If None, all
the output variables of the problem are selected. Default value is
None.
the output variables of the problem are selected. Default value is None.
:param dict fixed_variables: A dictionary with all the variables that
should be kept fixed during the plot. The keys of the dictionary
are the variables name whereas the values are the corresponding
@@ -173,7 +171,11 @@ class Plotter:
"""
if components is None:
components = [solver.problem.output_variables]
components = solver.problem.output_variables
if len(components) > 1:
raise NotImplementedError('Multidimensional plots are not implemented, '
'set components to an available components of the problem.')
v = [
var for var in solver.problem.input_variables
if var not in fixed_variables.keys()
@@ -188,13 +190,9 @@ class Plotter:
pts = pts.append(fixed_pts)
pts = pts.to(device=solver.device)
predicted_output = solver.forward(pts)
if isinstance(components, str):
predicted_output = predicted_output.extract(components)
elif callable(components):
predicted_output = components(predicted_output)
predicted_output = solver.forward(pts).extract(components).as_subclass(torch.Tensor)
truth_solution = getattr(solver.problem, 'truth_solution', None)
if len(v) == 1:
self._1d_plot(pts, predicted_output, method, truth_solution,
**kwargs)

File diff suppressed because one or more lines are too long

View File

@@ -35,7 +35,7 @@
#
# ```python
# from pina.problem import SpatialProblem
# from pina import CartesianProblem
# from pina.geometry import CartesianProblem
#
# class SimpleODE(SpatialProblem):
#
@@ -54,7 +54,7 @@
from pina.problem import SpatialProblem, TimeDependentProblem
from pina import CartesianDomain
from pina.geometry import CartesianDomain
class TimeSpaceODE(SpatialProblem, TimeDependentProblem):
@@ -77,7 +77,7 @@ class TimeSpaceODE(SpatialProblem, TimeDependentProblem):
#
# Once the `Problem` class is initialized, we need to represent the differential equation in **PINA**. In order to do this, we need to load the **PINA** operators from `pina.operators` module. Again, we'll consider Equation (1) and represent it in **PINA**:
# In[3]:
# In[2]:
from pina.problem import SpatialProblem
@@ -133,7 +133,7 @@ problem = SimpleODE()
#
# Data for training can come in form of direct numerical simulation reusults, or points in the domains. In case we do unsupervised learning, we just need the collocation points for training, i.e. points where we want to evaluate the neural network. Sampling point in **PINA** is very easy, here we show three examples using the `.discretise_domain` method of the `AbstractProblem` class.
# In[4]:
# In[3]:
# sampling 20 points in [0, 1] through discretization in all locations
@@ -149,7 +149,7 @@ problem.discretise_domain(n=20, mode='random', variables=['x'])
# We are going to use latin hypercube points for sampling. We need to sample in all the conditions domains. In our case we sample in `D` and `x0`.
# In[5]:
# In[4]:
# sampling for training
@@ -159,7 +159,7 @@ problem.discretise_domain(20, 'lh', locations=['D'])
# The points are saved in a python `dict`, and can be accessed by calling the attribute `input_pts` of the problem
# In[6]:
# In[5]:
print('Input points:', problem.input_pts)
@@ -168,7 +168,7 @@ print('Input points labels:', problem.input_pts['D'].labels)
# To visualize the sampled points we can use the `.plot_samples` method of the `Plotter` class
# In[7]:
# In[6]:
from pina import Plotter
@@ -181,10 +181,11 @@ pl.plot_samples(problem=problem)
# Once we have defined the problem and generated the data we can start the modelling. Here we will choose a `FeedForward` neural network available in `pina.model`, and we will train using the `PINN` solver from `pina.solvers`. We highlight that this training is fairly simple, for more advanced stuff consider the tutorials in the ***Physics Informed Neural Networks*** section of ***Tutorials***. For training we use the `Trainer` class from `pina.trainer`. Here we show a very short training and some method for plotting the results. Notice that by default all relevant metrics (e.g. MSE error during training) are going to be tracked using a `lightining` logger, by default `CSVLogger`. If you want to track the metric by yourself without a logger, use `pina.callbacks.MetricTracker`.
# In[8]:
# In[7]:
from pina import PINN, Trainer
from pina import Trainer
from pina.solvers import PINN
from pina.model import FeedForward
from pina.callbacks import MetricTracker
@@ -209,7 +210,7 @@ trainer.train()
# After the training we can inspect trainer logged metrics (by default **PINA** logs mean square error residual loss). The logged metrics can be accessed online using one of the `Lightinig` loggers. The final loss can be accessed by `trainer.logged_metrics`
# In[9]:
# In[8]:
# inspecting final loss
@@ -218,7 +219,7 @@ trainer.logged_metrics
# By using the `Plotter` class from **PINA** we can also do some quatitative plots of the solution.
# In[12]:
# In[9]:
# plotting the solution
@@ -227,7 +228,7 @@ pl.plot(solver=pinn)
# The solution is overlapped with the actual one, and they are barely indistinguishable. We can also plot easily the loss:
# In[14]:
# In[10]:
pl.plot_loss(trainer=trainer, label = 'mean_loss', logy=True)

File diff suppressed because one or more lines are too long

View File

@@ -177,7 +177,7 @@ plotter.plot(solver=pinn_feat)
# where $\alpha$ and $\beta$ are the abovementioned parameters.
# Their implementation is quite trivial: by using the class `torch.nn.Parameter` we cam define all the learnable parameters we need, and they are managed by `autograd` module!
# In[14]:
# In[7]:
class SinSinAB(torch.nn.Module):
@@ -212,7 +212,7 @@ trainer_learn.train()
# Umh, the final loss is not appreciabily better than previous model (with static extra features), despite the usage of learnable parameters. This is mainly due to the over-parametrization of the network: there are many parameter to optimize during the training, and the model in unable to understand automatically that only the parameters of the extra feature (and not the weights/bias of the FFN) should be tuned in order to fit our problem. A longer training can be helpful, but in this case the faster way to reach machine precision for solving the Poisson problem is removing all the hidden layers in the `FeedForward`, keeping only the $\alpha$ and $\beta$ parameters of the extra feature.
# In[19]:
# In[8]:
# make model + solver + trainer
@@ -234,7 +234,7 @@ trainer_learn.train()
#
# We conclude here by showing the graphical comparison of the unknown field and the loss trend for all the test cases presented here: the standard PINN, PINN with extra features, and PINN with learnable extra features.
# In[20]:
# In[9]:
plotter.plot(solver=pinn_learn)
@@ -242,7 +242,7 @@ plotter.plot(solver=pinn_learn)
# Let us compare the training losses for the various types of training
# In[21]:
# In[10]:
plotter.plot_loss(trainer, logy=True, label='Standard')

File diff suppressed because one or more lines are too long