* Adding a test for all PINN solvers to assert that the metrics are correctly log
* Adding test for Metric Tracker * Modify Metric Tracker to correctly log metrics
This commit is contained in:
committed by
Nicola Demo
parent
d00fb95d6e
commit
0fa4e1e58a
87
tests/test_callbacks/test_metric_tracker.py
Normal file
87
tests/test_callbacks/test_metric_tracker.py
Normal file
@@ -0,0 +1,87 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.callbacks import MetricTracker
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_)
|
||||
}
|
||||
|
||||
|
||||
# make the problem
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
model = FeedForward(len(poisson_problem.input_variables),
|
||||
len(poisson_problem.output_variables))
|
||||
|
||||
# make the solver
|
||||
solver = PINN(problem=poisson_problem, model=model)
|
||||
|
||||
|
||||
def test_metric_tracker_constructor():
|
||||
MetricTracker()
|
||||
|
||||
def test_metric_tracker_routine():
|
||||
# make the trainer
|
||||
trainer = Trainer(solver=solver,
|
||||
callbacks=[
|
||||
MetricTracker()
|
||||
],
|
||||
accelerator='cpu',
|
||||
max_epochs=5)
|
||||
trainer.train()
|
||||
# get the tracked metrics
|
||||
metrics = trainer.callbacks[0].metrics
|
||||
# assert the logged metrics are correct
|
||||
logged_metrics = sorted(list(metrics.keys()))
|
||||
total_metrics = sorted(
|
||||
list([key + '_loss' for key in poisson_problem.conditions.keys()])
|
||||
+ ['mean_loss'])
|
||||
assert logged_metrics == total_metrics
|
||||
|
||||
|
||||
Reference in New Issue
Block a user