* Adding a test for all PINN solvers to assert that the metrics are correctly log
* Adding test for Metric Tracker * Modify Metric Tracker to correctly log metrics
This commit is contained in:
committed by
Nicola Demo
parent
d00fb95d6e
commit
0fa4e1e58a
@@ -1,6 +1,8 @@
|
||||
"""PINA Callbacks Implementations"""
|
||||
|
||||
from pytorch_lightning.callbacks import Callback
|
||||
from pytorch_lightning.core.module import LightningModule
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
import torch
|
||||
import copy
|
||||
|
||||
@@ -28,20 +30,41 @@ class MetricTracker(Callback):
|
||||
"""
|
||||
self._collection = []
|
||||
|
||||
def on_train_epoch_end(self, trainer, __):
|
||||
def on_train_epoch_start(self, trainer, pl_module):
|
||||
"""
|
||||
Collect and track metrics at the end of each training epoch.
|
||||
Collect and track metrics at the start of each training epoch. At epoch
|
||||
zero the metric is not saved. At epoch ``k`` the metric which is tracked
|
||||
is the one of epoch ``k-1``.
|
||||
|
||||
:param trainer: The trainer object managing the training process.
|
||||
:type trainer: pytorch_lightning.Trainer
|
||||
:param _: Placeholder argument.
|
||||
:param pl_module: Placeholder argument.
|
||||
|
||||
:return: None
|
||||
:rtype: None
|
||||
"""
|
||||
self._collection.append(
|
||||
copy.deepcopy(trainer.logged_metrics)
|
||||
) # track them
|
||||
super().on_train_epoch_end(trainer, pl_module)
|
||||
if trainer.current_epoch > 0:
|
||||
self._collection.append(
|
||||
copy.deepcopy(trainer.logged_metrics)
|
||||
) # track them
|
||||
|
||||
def on_train_end(self, trainer, pl_module):
|
||||
"""
|
||||
Collect and track metrics at the end of training.
|
||||
|
||||
:param trainer: The trainer object managing the training process.
|
||||
:type trainer: pytorch_lightning.Trainer
|
||||
:param pl_module: Placeholder argument.
|
||||
|
||||
:return: None
|
||||
:rtype: None
|
||||
"""
|
||||
super().on_train_end(trainer, pl_module)
|
||||
if trainer.current_epoch > 0:
|
||||
self._collection.append(
|
||||
copy.deepcopy(trainer.logged_metrics)
|
||||
) # track them
|
||||
|
||||
@property
|
||||
def metrics(self):
|
||||
|
||||
@@ -195,15 +195,20 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
)
|
||||
|
||||
# check consistency location
|
||||
locations_to_sample = [
|
||||
condition for condition in self.conditions
|
||||
if hasattr(self.conditions[condition], 'location')
|
||||
]
|
||||
if locations == "all":
|
||||
locations = [condition for condition in self.conditions]
|
||||
# only locations that can be sampled
|
||||
locations = locations_to_sample
|
||||
else:
|
||||
check_consistency(locations, str)
|
||||
|
||||
if sorted(locations) != sorted(self.conditions):
|
||||
if sorted(locations) != sorted(locations_to_sample):
|
||||
TypeError(
|
||||
f"Wrong locations for sampling. Location ",
|
||||
f"should be in {self.conditions}.",
|
||||
f"should be in {locations_to_sample}.",
|
||||
)
|
||||
|
||||
# sampling
|
||||
|
||||
87
tests/test_callbacks/test_metric_tracker.py
Normal file
87
tests/test_callbacks/test_metric_tracker.py
Normal file
@@ -0,0 +1,87 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.callbacks import MetricTracker
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_)
|
||||
}
|
||||
|
||||
|
||||
# make the problem
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
model = FeedForward(len(poisson_problem.input_variables),
|
||||
len(poisson_problem.output_variables))
|
||||
|
||||
# make the solver
|
||||
solver = PINN(problem=poisson_problem, model=model)
|
||||
|
||||
|
||||
def test_metric_tracker_constructor():
|
||||
MetricTracker()
|
||||
|
||||
def test_metric_tracker_routine():
|
||||
# make the trainer
|
||||
trainer = Trainer(solver=solver,
|
||||
callbacks=[
|
||||
MetricTracker()
|
||||
],
|
||||
accelerator='cpu',
|
||||
max_epochs=5)
|
||||
trainer.train()
|
||||
# get the tracked metrics
|
||||
metrics = trainer.callbacks[0].metrics
|
||||
# assert the logged metrics are correct
|
||||
logged_metrics = sorted(list(metrics.keys()))
|
||||
total_metrics = sorted(
|
||||
list([key + '_loss' for key in poisson_problem.conditions.keys()])
|
||||
+ ['mean_loss'])
|
||||
assert logged_metrics == total_metrics
|
||||
|
||||
|
||||
113
tests/test_solvers/test_basepinn.py
Normal file
113
tests/test_solvers/test_basepinn.py
Normal file
@@ -0,0 +1,113 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina import Condition, LabelTensor, Trainer
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina.model import FeedForward
|
||||
from pina.solvers import PINNInterface
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
||||
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
||||
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_),
|
||||
'data2': Condition(
|
||||
input_points=in2_,
|
||||
output_points=out2_)
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
class FOOPINN(PINNInterface):
|
||||
def __init__(self, model, problem):
|
||||
super().__init__(models=[model], problem=problem,
|
||||
optimizers=[torch.optim.Adam],
|
||||
optimizers_kwargs=[{'lr' : 0.001}],
|
||||
extra_features=None,
|
||||
loss=torch.nn.MSELoss())
|
||||
def forward(self, x):
|
||||
return self.models[0](x)
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
loss_value = self.loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
self.store_log(loss_value=float(loss_value))
|
||||
return loss_value
|
||||
|
||||
def configure_optimizers(self):
|
||||
return self.optimizers, []
|
||||
|
||||
# make the problem
|
||||
poisson_problem = Poisson()
|
||||
poisson_problem.discretise_domain(100)
|
||||
model = FeedForward(len(poisson_problem.input_variables),
|
||||
len(poisson_problem.output_variables))
|
||||
model_extra_feats = FeedForward(
|
||||
len(poisson_problem.input_variables) + 1,
|
||||
len(poisson_problem.output_variables))
|
||||
|
||||
|
||||
def test_constructor():
|
||||
with pytest.raises(TypeError):
|
||||
PINNInterface()
|
||||
# a simple pinn built with PINNInterface
|
||||
FOOPINN(model, poisson_problem)
|
||||
|
||||
def test_train_step():
|
||||
solver = FOOPINN(model, poisson_problem)
|
||||
trainer = Trainer(solver, max_epochs=2, accelerator='cpu')
|
||||
trainer.train()
|
||||
|
||||
def test_log():
|
||||
solver = FOOPINN(model, poisson_problem)
|
||||
trainer = Trainer(solver, max_epochs=2, accelerator='cpu')
|
||||
trainer.train()
|
||||
# assert the logged metrics are correct
|
||||
logged_metrics = sorted(list(trainer.logged_metrics.keys()))
|
||||
total_metrics = sorted(
|
||||
list([key + '_loss' for key in poisson_problem.conditions.keys()])
|
||||
+ ['mean_loss'])
|
||||
assert logged_metrics == total_metrics
|
||||
@@ -138,6 +138,18 @@ def test_train_cpu():
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
def test_log():
|
||||
problem.discretise_domain(100)
|
||||
solver = CausalPINN(problem = problem,
|
||||
model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver, max_epochs=2, accelerator='cpu')
|
||||
trainer.train()
|
||||
# assert the logged metrics are correct
|
||||
logged_metrics = sorted(list(trainer.logged_metrics.keys()))
|
||||
total_metrics = sorted(
|
||||
list([key + '_loss' for key in problem.conditions.keys()])
|
||||
+ ['mean_loss'])
|
||||
assert logged_metrics == total_metrics
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
|
||||
@@ -163,6 +163,17 @@ def test_train_cpu():
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
def test_log():
|
||||
poisson_problem.discretise_domain(100)
|
||||
solver = PINN(problem = poisson_problem, model=model, loss=LpLoss())
|
||||
trainer = Trainer(solver, max_epochs=2, accelerator='cpu')
|
||||
trainer.train()
|
||||
# assert the logged metrics are correct
|
||||
logged_metrics = sorted(list(trainer.logged_metrics.keys()))
|
||||
total_metrics = sorted(
|
||||
list([key + '_loss' for key in poisson_problem.conditions.keys()])
|
||||
+ ['mean_loss'])
|
||||
assert logged_metrics == total_metrics
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
|
||||
@@ -160,6 +160,18 @@ def test_train_cpu():
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
def test_log():
|
||||
poisson_problem.discretise_domain(100)
|
||||
solver = GPINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver, max_epochs=2, accelerator='cpu')
|
||||
trainer.train()
|
||||
# assert the logged metrics are correct
|
||||
logged_metrics = sorted(list(trainer.logged_metrics.keys()))
|
||||
total_metrics = sorted(
|
||||
list([key + '_loss' for key in poisson_problem.conditions.keys()])
|
||||
+ ['mean_loss'])
|
||||
assert logged_metrics == total_metrics
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
|
||||
@@ -161,6 +161,18 @@ def test_train_cpu():
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
def test_log():
|
||||
poisson_problem.discretise_domain(100)
|
||||
solver = PINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver, max_epochs=2, accelerator='cpu')
|
||||
trainer.train()
|
||||
# assert the logged metrics are correct
|
||||
logged_metrics = sorted(list(trainer.logged_metrics.keys()))
|
||||
total_metrics = sorted(
|
||||
list([key + '_loss' for key in poisson_problem.conditions.keys()])
|
||||
+ ['mean_loss'])
|
||||
assert logged_metrics == total_metrics
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
|
||||
@@ -165,6 +165,18 @@ def test_train_cpu():
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
def test_log():
|
||||
poisson_problem.discretise_domain(100)
|
||||
solver = PINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver, max_epochs=2, accelerator='cpu')
|
||||
trainer.train()
|
||||
# assert the logged metrics are correct
|
||||
logged_metrics = sorted(list(trainer.logged_metrics.keys()))
|
||||
total_metrics = sorted(
|
||||
list([key + '_loss' for key in poisson_problem.conditions.keys()])
|
||||
+ ['mean_loss'])
|
||||
assert logged_metrics == total_metrics
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
|
||||
@@ -165,6 +165,18 @@ def test_train_cpu():
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
def test_log():
|
||||
poisson_problem.discretise_domain(100)
|
||||
solver = PINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver, max_epochs=2, accelerator='cpu')
|
||||
trainer.train()
|
||||
# assert the logged metrics are correct
|
||||
logged_metrics = sorted(list(trainer.logged_metrics.keys()))
|
||||
total_metrics = sorted(
|
||||
list([key + '_loss' for key in poisson_problem.conditions.keys()])
|
||||
+ ['mean_loss'])
|
||||
assert logged_metrics == total_metrics
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
|
||||
Reference in New Issue
Block a user