Add plot in tutorials 1,3,4,9
This commit is contained in:
committed by
Nicola Demo
parent
18edb4003e
commit
10ea59e15a
12
tutorials/tutorial9/tutorial.py
vendored
12
tutorials/tutorial9/tutorial.py
vendored
@@ -29,7 +29,7 @@ if IN_COLAB:
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
plt.style.use('tableau-colorblind10')
|
||||
from pina import Condition#,Plotter as pl
|
||||
from pina import Condition
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operator import laplacian
|
||||
from pina.model import FeedForward
|
||||
@@ -154,8 +154,14 @@ trainer.train()
|
||||
# In[5]:
|
||||
|
||||
|
||||
#pl = Plotter()
|
||||
#pl.plot(pinn)
|
||||
pts = pinn.problem.spatial_domain.sample(256, 'grid', variables='x')
|
||||
predicted_output = pinn.forward(pts).extract('u').as_subclass(torch.Tensor).cpu().detach()
|
||||
true_output = pinn.problem.truth_solution(pts).cpu().detach()
|
||||
pts = pts.cpu()
|
||||
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 8))
|
||||
ax.plot(pts.extract(['x']), predicted_output, label='Neural Network solution')
|
||||
ax.plot(pts.extract(['x']), true_output, label='True solution')
|
||||
plt.legend()
|
||||
|
||||
|
||||
# Great, they overlap perfectly! This seems a good result, considering the simple neural network used to some this (complex) problem. We will now test the neural network on the domain $[-4, 4]$ without retraining. In principle the periodicity should be present since the $v$ function ensures the periodicity in $(-\infty, \infty)$.
|
||||
|
||||
Reference in New Issue
Block a user