adjust LabelTensor (inheritance)
This commit is contained in:
@@ -1,64 +1,119 @@
|
||||
""" Module for LabelTensor """
|
||||
import torch
|
||||
|
||||
class LabelTensor():
|
||||
|
||||
def __init__(self, x, labels):
|
||||
|
||||
|
||||
if len(labels) != x.shape[1]:
|
||||
print(len(labels), x.shape[1])
|
||||
raise ValueError
|
||||
self.__labels = labels
|
||||
self.tensor = x
|
||||
|
||||
def __getitem__(self, key):
|
||||
if isinstance(key, (tuple, list)):
|
||||
indeces = [self.labels.index(k) for k in key]
|
||||
return LabelTensor(self.tensor[:, indeces], [self.labels[idx] for idx in indeces])
|
||||
if key in self.labels:
|
||||
return self.tensor[:, self.labels.index(key)]
|
||||
else:
|
||||
return self.tensor.__getitem__(key)
|
||||
|
||||
def __repr__(self):
|
||||
return self.tensor
|
||||
|
||||
def __str__(self):
|
||||
return '{}\n {}\n'.format(self.labels, self.tensor)
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
return self.tensor.shape
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.tensor.dtype
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.tensor.device
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
return self.__labels
|
||||
class LabelTensor(torch.Tensor):
|
||||
"""Torch tensor with a label for any column."""
|
||||
|
||||
@staticmethod
|
||||
def hstack(labeltensor_list):
|
||||
concatenated_tensor = torch.cat([lt.tensor for lt in labeltensor_list], axis=1)
|
||||
concatenated_label = sum([lt.labels for lt in labeltensor_list], [])
|
||||
return LabelTensor(concatenated_tensor, concatenated_label)
|
||||
def __new__(cls, x, labels, *args, **kwargs):
|
||||
return super().__new__(cls, x, *args, **kwargs)
|
||||
|
||||
def __init__(self, x, labels):
|
||||
'''
|
||||
Construct a `LabelTensor` by passing a tensor and a list of column
|
||||
labels. Such labels uniquely identify the columns of the tensor,
|
||||
allowing for an easier manipulation.
|
||||
|
||||
:param torch.Tensor x: the data tensor.
|
||||
:param labels: the labels of the columns.
|
||||
:type labels: str or iterable(str)
|
||||
|
||||
if __name__ == "__main__":
|
||||
import numpy as np
|
||||
a = np.random.uniform(size=(20, 3))
|
||||
a = np.random.uniform(size=(20, 3))
|
||||
p = torch.from_numpy(a)
|
||||
t = LabelTensor(p, labels=['u', 'p', 't'])
|
||||
print(t)
|
||||
print(t['u'])
|
||||
t *= 2
|
||||
print(t['u'])
|
||||
print(t[:, 0])
|
||||
:Example:
|
||||
>>> from pina import LabelTensor
|
||||
>>> tensor = LabelTensor(torch.rand((2000, 3)), ['a', 'b', 'c'])
|
||||
>>> tensor
|
||||
tensor([[6.7116e-02, 4.8892e-01, 8.9452e-01],
|
||||
[9.2392e-01, 8.2065e-01, 4.1986e-04],
|
||||
[8.9266e-01, 5.5446e-01, 6.3500e-01],
|
||||
...,
|
||||
[5.8194e-01, 9.4268e-01, 4.1841e-01],
|
||||
[1.0246e-01, 9.5179e-01, 3.7043e-02],
|
||||
[9.6150e-01, 8.0656e-01, 8.3824e-01]])
|
||||
>>> tensor.extract('a')
|
||||
tensor([[0.0671],
|
||||
[0.9239],
|
||||
[0.8927],
|
||||
...,
|
||||
[0.5819],
|
||||
[0.1025],
|
||||
[0.9615]])
|
||||
>>> tensor.extract(['a', 'b'])
|
||||
tensor([[0.0671, 0.4889],
|
||||
[0.9239, 0.8207],
|
||||
[0.8927, 0.5545],
|
||||
...,
|
||||
[0.5819, 0.9427],
|
||||
[0.1025, 0.9518],
|
||||
[0.9615, 0.8066]])
|
||||
>>> tensor.extract(['b', 'a'])
|
||||
tensor([[0.4889, 0.0671],
|
||||
[0.8207, 0.9239],
|
||||
[0.5545, 0.8927],
|
||||
...,
|
||||
[0.9427, 0.5819],
|
||||
[0.9518, 0.1025],
|
||||
[0.8066, 0.9615]])
|
||||
'''
|
||||
|
||||
if isinstance(labels, str):
|
||||
labels = [labels]
|
||||
|
||||
if len(labels) != x.shape[1]:
|
||||
raise ValueError(
|
||||
'the tensor has not the same number of columns of '
|
||||
'the passed labels.'
|
||||
)
|
||||
self.labels = labels
|
||||
|
||||
def clone(self, *args, **kwargs):
|
||||
"""
|
||||
Clone the LabelTensor. For more details, see
|
||||
:meth:`torch.Tensor.clone`.
|
||||
|
||||
:return: a copy of the tensor
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return LabelTensor(super().clone(*args, **kwargs), self.labels)
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
"""
|
||||
Performs Tensor dtype and/or device conversion. For more details, see
|
||||
:meth:`torch.Tensor.to`.
|
||||
"""
|
||||
new_obj = LabelTensor([], self.labels)
|
||||
tempTensor = super().to(*args, **kwargs)
|
||||
new_obj.data = tempTensor.data
|
||||
new_obj.requires_grad = tempTensor.requires_grad
|
||||
return new_obj
|
||||
|
||||
def extract(self, label_to_extract):
|
||||
"""
|
||||
Extract the subset of the original tensor by returning all the columns
|
||||
corresponding to the passed `label_to_extract`.
|
||||
|
||||
:param label_to_extract: the label(s) to extract.
|
||||
:type label_to_extract: str or iterable(str)
|
||||
:raises TypeError: labels are not str
|
||||
:raises ValueError: label to extract is not in the labels list
|
||||
"""
|
||||
|
||||
if isinstance(label_to_extract, str):
|
||||
label_to_extract = [label_to_extract]
|
||||
elif isinstance(label_to_extract, (tuple, list)): # TODO
|
||||
pass
|
||||
else:
|
||||
raise TypeError(
|
||||
'`label_to_extract` should be a str, or a str iterator')
|
||||
|
||||
try:
|
||||
indeces = [self.labels.index(f) for f in label_to_extract]
|
||||
except ValueError:
|
||||
raise ValueError('`label_to_extract` not in the labels list')
|
||||
|
||||
extracted_tensor = LabelTensor(
|
||||
self[:, indeces],
|
||||
[self.labels[idx] for idx in indeces]
|
||||
)
|
||||
|
||||
return extracted_tensor
|
||||
|
||||
Reference in New Issue
Block a user