version 0.0.1
This commit is contained in:
@@ -1,35 +1,26 @@
|
||||
import numpy as np
|
||||
import scipy.io
|
||||
import torch
|
||||
|
||||
from pina.segment import Segment
|
||||
from pina.cube import Cube
|
||||
from pina.problem import TimeDependentProblem, Problem1D
|
||||
from pina.problem import TimeDependentProblem, SpatialProblem
|
||||
from pina.operators import grad
|
||||
from pina import Condition
|
||||
from pina.span import Span
|
||||
|
||||
def tmp_grad(output_, input_):
|
||||
return torch.autograd.grad(
|
||||
output_,
|
||||
input_.tensor,
|
||||
grad_outputs=torch.ones(output_.size()).to(
|
||||
dtype=input_.tensor.dtype,
|
||||
device=input_.tensor.device),
|
||||
create_graph=True, retain_graph=True, allow_unused=True)[0]
|
||||
|
||||
class Burgers1D(TimeDependentProblem, Problem1D):
|
||||
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
||||
|
||||
input_variables = ['x', 't']
|
||||
spatial_variables = ['x']
|
||||
temporal_variable = ['t']
|
||||
output_variables = ['u']
|
||||
spatial_domain = Cube([[-1, 1]])
|
||||
temporal_domain = Cube([[0, 1]])
|
||||
domain = Span({'x': [-1, 1], 't': [0, 1]})
|
||||
|
||||
def burger_equation(input_, output_):
|
||||
grad_u = grad(output_['u'], input_)
|
||||
grad_x, grad_t = tmp_grad(output_['u'], input_).T
|
||||
grad_x, grad_t = grad(output_['u'], input_).T
|
||||
gradgrad_u_x = grad(grad_u['x'], input_)
|
||||
grad_xx = tmp_grad(grad_x, input_)[:, 0]
|
||||
return grad_u['t'] + output_['u']*grad_u['x'] - (0.01/torch.pi)*gradgrad_u_x['x']
|
||||
|
||||
return (
|
||||
grad_u['t'] + output_['u']*grad_u['x'] -
|
||||
(0.01/torch.pi)*gradgrad_u_x['x']
|
||||
)
|
||||
|
||||
def nil_dirichlet(input_, output_):
|
||||
u_expected = 0.0
|
||||
@@ -39,11 +30,9 @@ class Burgers1D(TimeDependentProblem, Problem1D):
|
||||
u_expected = -torch.sin(torch.pi*input_['x'])
|
||||
return output_['u'] - u_expected
|
||||
|
||||
|
||||
|
||||
conditions = {
|
||||
'gamma1': {'location': Segment((-1, 0), (-1, 1)), 'func': nil_dirichlet},
|
||||
'gamma2': {'location': Segment(( 1, 0), ( 1, 1)), 'func': nil_dirichlet},
|
||||
'initia': {'location': Segment((-1, 0), ( 1, 0)), 'func': initial_condition},
|
||||
'D': {'location': Cube([[-1, 1],[0,1]]), 'func': burger_equation}
|
||||
'gamma1': Condition(Span({'x': -1, 't': [0, 1]}), nil_dirichlet),
|
||||
'gamma2': Condition(Span({'x': 1, 't': [0, 1]}), nil_dirichlet),
|
||||
't0': Condition(Span({'x': [-1, 1], 't': 0}), initial_condition),
|
||||
'D': Condition(Span({'x': [-1, 1], 't': [0, 1]}), burger_equation),
|
||||
}
|
||||
|
||||
@@ -1,43 +1,41 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from pina.segment import Segment
|
||||
from pina.cube import Cube
|
||||
from pina.problem2d import Problem2D
|
||||
from pina.problem import Problem
|
||||
|
||||
from pina.problem import SpatialProblem, ParametricProblem
|
||||
from pina.operators import nabla
|
||||
from pina import Span, Condition
|
||||
|
||||
|
||||
class ParametricPoisson2DProblem(Problem2D):
|
||||
class ParametricPoisson(SpatialProblem, ParametricProblem):
|
||||
|
||||
def __init__(self):
|
||||
spatial_variables = ['x', 'y']
|
||||
parameters = ['mu1', 'mu2']
|
||||
output_variables = ['u']
|
||||
domain = Span({'x': [-1, 1], 'y': [-1, 1]})
|
||||
|
||||
def laplace_equation(input_, param_, output_):
|
||||
grad_u = self.grad(output_['u'], input_)
|
||||
gradgrad_u_x = self.grad(grad_u['x'], input_)
|
||||
gradgrad_u_y = self.grad(grad_u['y'], input_)
|
||||
force_term = torch.exp(
|
||||
- 2*(input_['x'] - input_['mu1'])**2 -
|
||||
2*(input_['y'] - input_['mu2'])**2
|
||||
)
|
||||
return gradgrad_u_x['x'] + gradgrad_u_y['y'] - force_term
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = torch.exp(
|
||||
- 2*(input_['x'] - input_['mu1'])**2 - 2*(input_['y'] -
|
||||
input_['mu2'])**2)
|
||||
return nabla(output_['u'], input_) - force_term
|
||||
|
||||
def nil_dirichlet(input_, param_, output_):
|
||||
value = 0.0
|
||||
return output_['u'] - value
|
||||
def nil_dirichlet(input_, output_):
|
||||
value = 0.0
|
||||
return output_['u'] - value
|
||||
|
||||
self.conditions = {
|
||||
'gamma1': {'location': Segment((-1, -1), ( 1, -1)),'func': nil_dirichlet},
|
||||
'gamma2': {'location': Segment(( 1, -1), ( 1, 1)),'func': nil_dirichlet},
|
||||
'gamma3': {'location': Segment(( 1, 1), (-1, 1)),'func': nil_dirichlet},
|
||||
'gamma4': {'location': Segment((-1, 1), (-1, -1)),'func': nil_dirichlet},
|
||||
'D': {'location': Cube([[-1, 1], [-1, 1]]), 'func': laplace_equation}
|
||||
}
|
||||
|
||||
self.input_variables = ['x', 'y']
|
||||
self.output_variables = ['u']
|
||||
self.parameters = ['mu1', 'mu2']
|
||||
#self.truth_solution = poisson_sol
|
||||
self.spatial_domain = Cube([[0, 1], [0, 1]])
|
||||
self.parameter_domain = np.array([[-1, 1], [-1, 1]])
|
||||
|
||||
|
||||
#self.check() # Check the problem is correctly set
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
Span({'x': [-1, 1], 'y': 1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
||||
nil_dirichlet),
|
||||
'gamma2': Condition(
|
||||
Span({'x': [-1, 1], 'y': -1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
||||
nil_dirichlet),
|
||||
'gamma3': Condition(
|
||||
Span({'x': 1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
||||
nil_dirichlet),
|
||||
'gamma4': Condition(
|
||||
Span({'x': -1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
||||
nil_dirichlet),
|
||||
'D': Condition(
|
||||
Span({'x': [-1, 1], 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
||||
laplace_equation),
|
||||
}
|
||||
|
||||
35
examples/problems/poisson.py
Normal file
35
examples/problems/poisson.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import nabla
|
||||
from pina import Condition, Span
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
|
||||
spatial_variables = ['x', 'y']
|
||||
output_variables = ['u']
|
||||
domain = Span({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_['x']*torch.pi) *
|
||||
torch.sin(input_['y']*torch.pi))
|
||||
return nabla(output_['u'], input_).flatten() - force_term
|
||||
|
||||
def nil_dirichlet(input_, output_):
|
||||
value = 0.0
|
||||
return output_['u'] - value
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(Span({'x': [-1, 1], 'y': 1}), nil_dirichlet),
|
||||
'gamma2': Condition(Span({'x': [-1, 1], 'y': -1}), nil_dirichlet),
|
||||
'gamma3': Condition(Span({'x': 1, 'y': [-1, 1]}), nil_dirichlet),
|
||||
'gamma4': Condition(Span({'x': -1, 'y': [-1, 1]}), nil_dirichlet),
|
||||
'D': Condition(Span({'x': [-1, 1], 'y': [-1, 1]}), laplace_equation),
|
||||
}
|
||||
|
||||
def poisson_sol(self, x, y):
|
||||
return -(np.sin(x*np.pi)*np.sin(y*np.pi))/(2*np.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
@@ -1,35 +0,0 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from pina.segment import Segment
|
||||
from pina.cube import Cube
|
||||
from pina.problem import Problem2D
|
||||
from pina.operators import grad, div, nabla
|
||||
|
||||
|
||||
class Poisson2D(Problem2D):
|
||||
|
||||
input_variables = ['x', 'y']
|
||||
output_variables = ['u']
|
||||
spatial_domain = Cube([[0, 1], [0, 1]])
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_['x']*torch.pi)
|
||||
* torch.sin(input_['y']*torch.pi))
|
||||
return nabla(output_['u'], input_).flatten() - force_term
|
||||
|
||||
def nil_dirichlet(input_, output_):
|
||||
value = 0.0
|
||||
return output_['u'] - value
|
||||
|
||||
conditions = {
|
||||
'gamma1': {'location': Segment((0, 0), (1, 0)), 'func': nil_dirichlet},
|
||||
'gamma2': {'location': Segment((1, 0), (1, 1)), 'func': nil_dirichlet},
|
||||
'gamma3': {'location': Segment((1, 1), (0, 1)), 'func': nil_dirichlet},
|
||||
'gamma4': {'location': Segment((0, 1), (0, 0)), 'func': nil_dirichlet},
|
||||
'D': {'location': Cube([[0, 1], [0, 1]]), 'func': laplace_equation}
|
||||
}
|
||||
|
||||
def poisson_sol(self, x, y):
|
||||
return -(np.sin(x*np.pi)*np.sin(y*np.pi))/(2*np.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
Reference in New Issue
Block a user