version 0.0.1

This commit is contained in:
Your Name
2022-02-11 16:44:37 +01:00
parent fa8ffd5042
commit 1483746b45
29 changed files with 416 additions and 559 deletions

View File

@@ -1,27 +1,21 @@
import sys
import numpy as np
import torch
import argparse
from pina.pinn import PINN
from pina.ppinn import ParametricPINN as pPINN
from pina.label_tensor import LabelTensor
from torch.nn import ReLU, Tanh, Softplus
from problems.parametric_poisson import ParametricPoisson2DProblem as Poisson2D
from pina.deep_feed_forward import DeepFeedForward
import torch
from torch.nn import Softplus
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
from pina import PINN as pPINN
from problems.parametric_poisson import ParametricPoisson
from pina.model import FeedForward
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
return torch.exp(- 2*(x[:, 0] - x[:, 2])**2 - 2*(x[:, 1] - x[:, 3])**2)
return torch.exp(- 2*(x['x'] - x['mu1'])**2 - 2*(x['y'] - x['mu2'])**2)
if __name__ == "__main__":
@@ -35,11 +29,11 @@ if __name__ == "__main__":
feat = [myFeature()] if args.features else []
poisson_problem = Poisson2D()
model = DeepFeedForward(
poisson_problem = ParametricPoisson()
model = FeedForward(
layers=[200, 40, 10],
output_variables=poisson_problem.output_variables,
input_variables=poisson_problem.input_variables+['mu1', 'mu2'],
input_variables=poisson_problem.input_variables,
func=Softplus,
extra_features=feat
)
@@ -53,105 +47,10 @@ if __name__ == "__main__":
if args.s:
pinn.span_pts(30, 'chebyshev', ['D'])
pinn.span_pts(50, 'grid', ['gamma1', 'gamma2', 'gamma3', 'gamma4'])
#pinn.plot_pts()
pinn.span_pts(2000, 'random', ['D'])
pinn.span_pts(200, 'random', ['gamma1', 'gamma2', 'gamma3', 'gamma4'])
pinn.train(10000, 10)
pinn.save_state('pina.poisson_param')
else:
pinn.load_state('pina.poisson_param')
#pinn.plot(40, torch.tensor([-0.8, -0.8]))
#pinn.plot(40, torch.tensor([ 0.8, 0.8]))
from smithers.io import VTUHandler
from scipy.interpolate import griddata
import matplotlib
matplotlib.use('GTK3Agg')
import matplotlib.pyplot as plt
res = 64
fname_minus = 'Poisson_param_08minus000000.vtu'
param = torch.tensor([-0.8, -0.8])
pts_container = []
for mn, mx in [[-1, 1], [-1, 1]]:
pts_container.append(np.linspace(mn, mx, res))
grids_container = np.meshgrid(*pts_container)
unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T
unrolled_pts = torch.cat([unrolled_pts, param.double().repeat(unrolled_pts.shape[0]).reshape(-1, 2)], axis=1)
#unrolled_pts.to(dtype=self.dtype)
unrolled_pts = LabelTensor(unrolled_pts, ['x1', 'x2', 'mu1', 'mu2'])
Z_pred = pinn.model(unrolled_pts.tensor)
data = VTUHandler.read(fname_minus)
print(data['points'][:, :2].shape)
print(data['point_data']['f_16'].shape)
print(grids_container[0].shape)
print(grids_container[1].shape)
Z_truth = griddata(data['points'][:, :2], data['point_data']['f_16'], (grids_container[0], grids_container[1]))
err = np.abs(Z_truth + Z_pred.tensor.reshape(res, res).detach().numpy())
plt.subplot(1, 3, 1)
plt.pcolor(-Z_pred.tensor.reshape(res, res).detach())
plt.colorbar()
plt.subplot(1, 3, 2)
plt.pcolor(Z_truth)
plt.colorbar()
plt.subplot(1, 3, 3)
plt.pcolor(err, vmin=0, vmax=0.009)
plt.colorbar()
plt.show()
print(unrolled_pts.tensor.shape)
with open('parpoisson_minus_plot.txt', 'w') as f_:
f_.write('x y truth pred e\n')
for (x, y), tru, pre, e in zip(unrolled_pts[:, :2], Z_truth.reshape(-1, 1), -Z_pred.tensor.reshape(-1, 1), err.reshape(-1, 1)):
f_.write('{} {} {} {} {}\n'.format(x.item(), y.item(), tru.item(), pre.item(), e.item()))
fname_plus = 'Poisson_param_08plus000000.vtu'
param = torch.tensor([0.8, 0.8])
pts_container = []
for mn, mx in [[-1, 1], [-1, 1]]:
pts_container.append(np.linspace(mn, mx, res))
grids_container = np.meshgrid(*pts_container)
unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T
unrolled_pts = torch.cat([unrolled_pts, param.double().repeat(unrolled_pts.shape[0]).reshape(-1, 2)], axis=1)
#unrolled_pts.to(dtype=self.dtype)
unrolled_pts = LabelTensor(unrolled_pts, ['x1', 'x2', 'mu1', 'mu2'])
Z_pred = pinn.model(unrolled_pts.tensor)
data = VTUHandler.read(fname_plus)
print(data['points'][:, :2].shape)
print(data['point_data']['f_16'].shape)
print(grids_container[0].shape)
print(grids_container[1].shape)
Z_truth = griddata(data['points'][:, :2], data['point_data']['f_16'], (grids_container[0], grids_container[1]))
err = np.abs(Z_truth + Z_pred.tensor.reshape(res, res).detach().numpy())
plt.subplot(1, 3, 1)
plt.pcolor(-Z_pred.tensor.reshape(res, res).detach())
plt.colorbar()
plt.subplot(1, 3, 2)
plt.pcolor(Z_truth)
plt.colorbar()
plt.subplot(1, 3, 3)
print('gggggg')
plt.pcolor(err, vmin=0, vmax=0.001)
plt.colorbar()
plt.show()
with open('parpoisson_plus_plot.txt', 'w') as f_:
f_.write('x y truth pred e\n')
for (x, y), tru, pre, e in zip(unrolled_pts[:, :2], Z_truth.reshape(-1, 1), -Z_pred.tensor.reshape(-1, 1), err.reshape(-1, 1)):
f_.write('{} {} {} {} {}\n'.format(x.item(), y.item(), tru.item(), pre.item(), e.item()))