version 0.0.1

This commit is contained in:
Your Name
2022-02-11 16:44:37 +01:00
parent fa8ffd5042
commit 1483746b45
29 changed files with 416 additions and 559 deletions

View File

@@ -0,0 +1,66 @@
import torch
import torch.nn as nn
from pina.label_tensor import LabelTensor
class FeedForward(torch.nn.Module):
def __init__(self, input_variables, output_variables, inner_size=20,
n_layers=2, func=nn.Tanh, layers=None, extra_features=None):
'''
'''
super().__init__()
if extra_features is None:
extra_features = []
self.extra_features = nn.Sequential(*extra_features)
self.input_variables = input_variables
self.input_dimension = len(input_variables)
self.output_variables = output_variables
self.output_dimension = len(output_variables)
n_features = len(extra_features)
if layers is None:
layers = [inner_size] * n_layers
tmp_layers = layers.copy()
tmp_layers.insert(0, self.input_dimension+n_features)
tmp_layers.append(self.output_dimension)
self.layers = []
for i in range(len(tmp_layers)-1):
self.layers.append(nn.Linear(tmp_layers[i], tmp_layers[i+1]))
if isinstance(func, list):
self.functions = func
else:
self.functions = [func for _ in range(len(self.layers)-1)]
unique_list = []
for layer, func in zip(self.layers[:-1], self.functions):
unique_list.append(layer)
if func is not None:
unique_list.append(func())
unique_list.append(self.layers[-1])
self.model = nn.Sequential(*unique_list)
def forward(self, x):
"""
"""
nf = len(self.extra_features)
if nf == 0:
return LabelTensor(self.model(x.tensor), self.output_variables)
# if self.extra_features
input_ = torch.zeros(x.shape[0], nf+x.shape[1], dtype=x.dtype,
device=x.device)
input_[:, :x.shape[1]] = x.tensor
for i, feature in enumerate(self.extra_features,
start=self.input_dimension):
input_[:, i] = feature(x)
return LabelTensor(self.model(input_), self.output_variables)