version 0.0.1
This commit is contained in:
185
pina/ppinn.py
185
pina/ppinn.py
@@ -1,28 +1,16 @@
|
||||
from mpmath import chebyt, chop, taylor
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from .problem import AbstractProblem
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from .cube import Cube
|
||||
from .deep_feed_forward import DeepFeedForward
|
||||
from pina.label_tensor import LabelTensor
|
||||
from pina.pinn import PINN
|
||||
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
|
||||
from . import PINN, LabelTensor
|
||||
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # 3.1415927410125732
|
||||
|
||||
|
||||
class ParametricPINN(PINN):
|
||||
|
||||
def __init__(self,
|
||||
problem,
|
||||
model,
|
||||
optimizer=torch.optim.Adam,
|
||||
lr=0.001,
|
||||
regularizer=0.00001,
|
||||
data_weight=1.,
|
||||
dtype=torch.float64,
|
||||
device='cpu',
|
||||
lr_accelerate=None,
|
||||
error_norm='mse'):
|
||||
def __init__(self, problem, model, optimizer=torch.optim.Adam, lr=0.001,
|
||||
regularizer=0.00001, data_weight=1., dtype=torch.float64,
|
||||
device='cpu', lr_accelerate=None, error_norm='mse'):
|
||||
'''
|
||||
:param Problem problem: the formualation of the problem.
|
||||
:param dict architecture: a dictionary containing the information to
|
||||
@@ -40,7 +28,7 @@ class ParametricPINN(PINN):
|
||||
default is `torch.float64`.
|
||||
:param float lr_accelete: the coefficient that controls the learning
|
||||
rate increase, such that, for all the epoches in which the loss is
|
||||
decreasing, the learning_rate is update using
|
||||
decreasing, the learning_rate is update using
|
||||
$learning_rate = learning_rate * lr_accelerate$.
|
||||
When the loss stops to decrease, the learning rate is set to the
|
||||
initial value [TODO test parameters]
|
||||
@@ -49,7 +37,7 @@ class ParametricPINN(PINN):
|
||||
|
||||
self.problem = problem
|
||||
|
||||
|
||||
|
||||
# self._architecture = architecture if architecture else dict()
|
||||
# self._architecture['input_dimension'] = self.problem.domain_bound.shape[0]
|
||||
# self._architecture['output_dimension'] = len(self.problem.variables)
|
||||
@@ -77,7 +65,7 @@ class ParametricPINN(PINN):
|
||||
self.trained_epoch = 0
|
||||
self.optimizer = optimizer(
|
||||
self.model.parameters(), lr=lr, weight_decay=regularizer)
|
||||
|
||||
|
||||
self.data_weight = data_weight
|
||||
|
||||
@property
|
||||
@@ -86,7 +74,7 @@ class ParametricPINN(PINN):
|
||||
|
||||
@problem.setter
|
||||
def problem(self, problem):
|
||||
if not isinstance(problem, Problem):
|
||||
if not isinstance(problem, AbstractProblem):
|
||||
raise TypeError
|
||||
self._problem = problem
|
||||
|
||||
@@ -103,124 +91,31 @@ class ParametricPINN(PINN):
|
||||
def get_phys_residuals(self):
|
||||
"""
|
||||
"""
|
||||
|
||||
|
||||
residuals = []
|
||||
for equation in self.problem.equation:
|
||||
residuals.append(equation(self.phys_pts, self.model(self.phys_pts)))
|
||||
return residuals
|
||||
|
||||
|
||||
def _compute_norm(self, vec):
|
||||
"""
|
||||
Compute the norm of the `vec` one-dimensional tensor based on the
|
||||
`self.error_norm` attribute.
|
||||
|
||||
.. todo: complete
|
||||
|
||||
:param vec torch.tensor: the tensor
|
||||
"""
|
||||
if isinstance(self.error_norm, int):
|
||||
return torch.sum(torch.abs(vec**self.error_norm))**(1./self.error_norm)
|
||||
elif self.error_norm == 'mse':
|
||||
return torch.mean(vec**2)
|
||||
elif self.error_norm == 'me':
|
||||
return torch.mean(torch.abs(vec))
|
||||
else:
|
||||
raise RuntimeError
|
||||
|
||||
def save_state(self, filename):
|
||||
|
||||
checkpoint = {
|
||||
'epoch': self.trained_epoch,
|
||||
'model_state': self.model.state_dict(),
|
||||
'optimizer_state' : self.optimizer.state_dict(),
|
||||
'optimizer_class' : self.optimizer.__class__,
|
||||
}
|
||||
|
||||
# TODO save also architecture param?
|
||||
#if isinstance(self.model, DeepFeedForward):
|
||||
# checkpoint['model_class'] = self.model.__class__
|
||||
# checkpoint['model_structure'] = {
|
||||
# }
|
||||
torch.save(checkpoint, filename)
|
||||
|
||||
def load_state(self, filename):
|
||||
|
||||
checkpoint = torch.load(filename)
|
||||
self.model.load_state_dict(checkpoint['model_state'])
|
||||
|
||||
self.optimizer = checkpoint['optimizer_class'](self.model.parameters())
|
||||
self.optimizer.load_state_dict(checkpoint['optimizer_state'])
|
||||
|
||||
self.trained_epoch = checkpoint['epoch']
|
||||
return self
|
||||
|
||||
|
||||
def span_pts(self, n, mode='grid', locations='all'):
|
||||
'''
|
||||
|
||||
'''
|
||||
|
||||
if locations == 'all':
|
||||
locations = [condition for condition in self.problem.conditions]
|
||||
|
||||
|
||||
for location in locations:
|
||||
manifold, func = self.problem.conditions[location].values()
|
||||
if torch.is_tensor(manifold):
|
||||
pts = manifold
|
||||
else:
|
||||
pts = manifold.discretize(n, mode)
|
||||
|
||||
pts = torch.from_numpy(pts)
|
||||
|
||||
self.input_pts[location] = LabelTensor(pts, self.problem.input_variables)
|
||||
self.input_pts[location].tensor.to(dtype=self.dtype, device=self.device)
|
||||
self.input_pts[location].tensor.requires_grad_(True)
|
||||
self.input_pts[location].tensor.retain_grad()
|
||||
|
||||
|
||||
def train(self, stop=100, frequency_print=2, trial=None):
|
||||
|
||||
epoch = 0
|
||||
|
||||
## TODO for elliptic
|
||||
# parameters = torch.cat(torch.linspace(
|
||||
# self.problem.parameter_domain[0, 0],
|
||||
# self.problem.parameter_domain[0, 1],
|
||||
# 5)
|
||||
|
||||
## for param laplacian
|
||||
#parameters = torch.rand(50, 2)*2-1
|
||||
parameters = torch.from_numpy(Cube([[-1, 1], [-1, 1]]).discretize(5, 'grid'))
|
||||
# alpha_p = torch.logspace(start=-2, end=0, steps=10)
|
||||
# mu_p = torch.linspace(0.5, 3, 5)
|
||||
# g1_, g2_ = torch.meshgrid(alpha_p, mu_p)
|
||||
# parameters = torch.cat([g2_.reshape(-1, 1), g1_.reshape(-1, 1)], axis=1)
|
||||
print(parameters)
|
||||
|
||||
while True:
|
||||
|
||||
losses = []
|
||||
|
||||
for condition_name in self.problem.conditions:
|
||||
|
||||
condition = self.problem.conditions[condition_name]
|
||||
pts = self.input_pts[condition_name]
|
||||
pts = torch.cat([
|
||||
pts.tensor.repeat_interleave(parameters.shape[0], dim=0),
|
||||
torch.tile(parameters, (pts.tensor.shape[0], 1))
|
||||
], axis=1)
|
||||
pts = LabelTensor(pts, self.problem.input_variables + self.problem.parameters)
|
||||
|
||||
predicted = self.model(pts.tensor)
|
||||
#predicted = self.model(pts)
|
||||
|
||||
if isinstance(self.problem.conditions[condition_name]['func'], list):
|
||||
for func in self.problem.conditions[condition_name]['func']:
|
||||
residuals = func(pts, None, predicted)
|
||||
losses.append(self._compute_norm(residuals))
|
||||
else:
|
||||
residuals = self.problem.conditions[condition_name]['func'](pts, None, predicted)
|
||||
losses.append(self._compute_norm(residuals))
|
||||
residuals = condition.function(pts, predicted)
|
||||
losses.append(self._compute_norm(residuals))
|
||||
self.optimizer.zero_grad()
|
||||
sum(losses).backward()
|
||||
self.optimizer.step()
|
||||
@@ -268,15 +163,15 @@ class ParametricPINN(PINN):
|
||||
|
||||
if trial:
|
||||
import optuna
|
||||
rial.report(loss[0].item()+loss[1].item(), epoch)
|
||||
trial.report(loss[0].item()+loss[1].item(), epoch)
|
||||
if trial.should_prune():
|
||||
raise optuna.exceptions.TrialPruned()
|
||||
|
||||
if isinstance(stop, int):
|
||||
if epoch == stop:
|
||||
if epoch == stop:
|
||||
break
|
||||
elif isinstance(stop, float):
|
||||
if loss[0].item() + loss[1].item() < stop:
|
||||
if loss[0].item() + loss[1].item() < stop:
|
||||
break
|
||||
|
||||
if epoch % frequency_print == 0:
|
||||
@@ -289,7 +184,7 @@ class ParametricPINN(PINN):
|
||||
|
||||
|
||||
def error(self, dtype='l2', res=100):
|
||||
|
||||
|
||||
import numpy as np
|
||||
if hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None:
|
||||
pts_container = []
|
||||
@@ -305,8 +200,8 @@ class ParametricPINN(PINN):
|
||||
unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T.to(dtype=self.dtype, device=self.device)
|
||||
Z_pred = self.model(unrolled_pts)
|
||||
Z_pred = Z_pred.detach().numpy().reshape(grids_container[0].shape)
|
||||
|
||||
if dtype == 'l2':
|
||||
|
||||
if dtype == 'l2':
|
||||
return np.linalg.norm(Z_pred - Z_true)/np.linalg.norm(Z_true)
|
||||
else:
|
||||
# TODO H1
|
||||
@@ -339,7 +234,7 @@ class ParametricPINN(PINN):
|
||||
|
||||
for i, output in enumerate(Z_pred.tensor.T, start=1):
|
||||
output = output.detach().numpy().reshape(grids_container[0].shape)
|
||||
plt.subplot(1, n, i)
|
||||
plt.subplot(1, n, i)
|
||||
plt.contourf(*grids_container, output)
|
||||
plt.colorbar()
|
||||
|
||||
@@ -354,14 +249,14 @@ class ParametricPINN(PINN):
|
||||
import matplotlib
|
||||
matplotlib.use('GTK3Agg')
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
if hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None:
|
||||
n_plot = 2
|
||||
elif hasattr(self.problem, 'data_solution') and self.problem.data_solution is not None:
|
||||
n_plot = 2
|
||||
else:
|
||||
n_plot = 1
|
||||
|
||||
|
||||
fig, axs = plt.subplots(nrows=1, ncols=n_plot, figsize=(n_plot*6,4))
|
||||
if not isinstance(axs, np.ndarray): axs = [axs]
|
||||
|
||||
@@ -369,14 +264,14 @@ class ParametricPINN(PINN):
|
||||
grids_container = self.problem.data_solution['grid']
|
||||
Z_true = self.problem.data_solution['grid_solution']
|
||||
elif hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None:
|
||||
|
||||
|
||||
pts_container = []
|
||||
for mn, mx in self.problem.domain_bound:
|
||||
pts_container.append(np.linspace(mn, mx, res))
|
||||
|
||||
grids_container = np.meshgrid(*pts_container)
|
||||
Z_true = self.problem.truth_solution(*grids_container)
|
||||
|
||||
|
||||
pts_container = []
|
||||
for mn, mx in self.problem.domain_bound:
|
||||
pts_container.append(np.linspace(mn, mx, res))
|
||||
@@ -396,38 +291,38 @@ class ParametricPINN(PINN):
|
||||
set_pred = axs[0].contourf(*grids_container, Z_pred)
|
||||
axs[0].set_title('PINN [trained epoch = {}]'.format(self.trained_epoch) + " " + variable) #TODO add info about parameter in the title
|
||||
fig.colorbar(set_pred, ax=axs[0])
|
||||
|
||||
|
||||
if n_plot == 2:
|
||||
|
||||
|
||||
set_true = axs[1].contourf(*grids_container, Z_true)
|
||||
|
||||
|
||||
axs[1].set_title('Truth solution')
|
||||
fig.colorbar(set_true, ax=axs[1])
|
||||
|
||||
|
||||
if filename is None:
|
||||
plt.show()
|
||||
else:
|
||||
fig.savefig(filename + " " + variable)
|
||||
|
||||
|
||||
def plot_error(self, res, filename=None):
|
||||
import matplotlib
|
||||
matplotlib.use('GTK3Agg')
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
|
||||
fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(6,4))
|
||||
if not isinstance(axs, np.ndarray): axs = [axs]
|
||||
|
||||
if hasattr(self.problem, 'data_solution') and self.problem.data_solution is not None:
|
||||
grids_container = self.problem.data_solution['grid']
|
||||
Z_true = self.problem.data_solution['grid_solution']
|
||||
elif hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None:
|
||||
elif hasattr(self.problem, 'truth_solution') and self.problem.truth_solution is not None:
|
||||
pts_container = []
|
||||
for mn, mx in self.problem.domain_bound:
|
||||
pts_container.append(np.linspace(mn, mx, res))
|
||||
|
||||
grids_container = np.meshgrid(*pts_container)
|
||||
Z_true = self.problem.truth_solution(*grids_container)
|
||||
Z_true = self.problem.truth_solution(*grids_container)
|
||||
try:
|
||||
unrolled_pts = torch.tensor([t.flatten() for t in grids_container]).T.to(dtype=self.type)
|
||||
|
||||
@@ -449,7 +344,7 @@ class ParametricPINN(PINN):
|
||||
'''
|
||||
print(self.pred_loss.item(),loss.item(), self.old_loss.item())
|
||||
if self.accelerate is not None:
|
||||
if self.pred_loss > loss and loss >= self.old_loss:
|
||||
if self.pred_loss > loss and loss >= self.old_loss:
|
||||
self.current_lr = self.original_lr
|
||||
#print('restart')
|
||||
elif (loss-self.pred_loss).item() < 0.1:
|
||||
@@ -459,7 +354,7 @@ if self.accelerate is not None:
|
||||
self.current_lr -= .5*self.current_lr
|
||||
#print(self.current_lr)
|
||||
#self.current_lr = min(loss.item()*3, 0.02)
|
||||
|
||||
|
||||
for g in self.optimizer.param_groups:
|
||||
g['lr'] = self.current_lr
|
||||
g['lr'] = self.current_lr
|
||||
'''
|
||||
|
||||
Reference in New Issue
Block a user