Update tutorials 1 through 12 to current version 0.2
This commit is contained in:
committed by
Nicola Demo
parent
10ea59e15a
commit
14a6008437
60
tutorials/tutorial4/tutorial.py
vendored
60
tutorials/tutorial4/tutorial.py
vendored
@@ -530,16 +530,16 @@ net.eval()
|
||||
output = net(input_data).detach()
|
||||
|
||||
# visualize data
|
||||
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
|
||||
pic1 = axes[0].scatter(grid[:, 0], grid[:, 1], c=input_data[0, 0, :, -1])
|
||||
axes[0].set_title("Real")
|
||||
fig.colorbar(pic1)
|
||||
plt.subplot(1, 2, 2)
|
||||
pic2 = axes[1].scatter(grid[:, 0], grid[:, 1], c=output[0, 0, :, -1])
|
||||
axes[1].set_title("Autoencoder")
|
||||
fig.colorbar(pic2)
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
#fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
|
||||
#pic1 = axes[0].scatter(grid[:, 0], grid[:, 1], c=input_data[0, 0, :, -1])
|
||||
#axes[0].set_title("Real")
|
||||
#fig.colorbar(pic1)
|
||||
#plt.subplot(1, 2, 2)
|
||||
#pic2 = axes[1].scatter(grid[:, 0], grid[:, 1], c=output[0, 0, :, -1])
|
||||
#axes[1].set_title("Autoencoder")
|
||||
#fig.colorbar(pic2)
|
||||
#plt.tight_layout()
|
||||
#plt.show()
|
||||
|
||||
|
||||
# As we can see, the two solutions are really similar! We can compute the $l_2$ error quite easily as well:
|
||||
@@ -579,16 +579,16 @@ latent = net.encoder(input_data)
|
||||
output = net.decoder(latent, input_data2).detach()
|
||||
|
||||
# show the picture
|
||||
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
|
||||
pic1 = axes[0].scatter(grid2[:, 0], grid2[:, 1], c=input_data2[0, 0, :, -1])
|
||||
axes[0].set_title("Real")
|
||||
fig.colorbar(pic1)
|
||||
plt.subplot(1, 2, 2)
|
||||
pic2 = axes[1].scatter(grid2[:, 0], grid2[:, 1], c=output[0, 0, :, -1])
|
||||
axes[1].set_title("Up-sampling")
|
||||
fig.colorbar(pic2)
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
#fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
|
||||
#pic1 = axes[0].scatter(grid2[:, 0], grid2[:, 1], c=input_data2[0, 0, :, -1])
|
||||
#axes[0].set_title("Real")
|
||||
#fig.colorbar(pic1)
|
||||
#plt.subplot(1, 2, 2)
|
||||
#pic2 = axes[1].scatter(grid2[:, 0], grid2[:, 1], c=output[0, 0, :, -1])
|
||||
# axes[1].set_title("Up-sampling")
|
||||
#fig.colorbar(pic2)
|
||||
#plt.tight_layout()
|
||||
#plt.show()
|
||||
|
||||
|
||||
# As we can see we have a very good approximation of the original function, even thought some noise is present. Let's calculate the error now:
|
||||
@@ -621,16 +621,16 @@ latent = net.encoder(input_data2)
|
||||
output = net.decoder(latent, input_data2).detach()
|
||||
|
||||
# show the picture
|
||||
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
|
||||
pic1 = axes[0].scatter(grid2[:, 0], grid2[:, 1], c=input_data2[0, 0, :, -1])
|
||||
axes[0].set_title("Real")
|
||||
fig.colorbar(pic1)
|
||||
plt.subplot(1, 2, 2)
|
||||
pic2 = axes[1].scatter(grid2[:, 0], grid2[:, 1], c=output[0, 0, :, -1])
|
||||
axes[1].set_title("Autoencoder not re-trained")
|
||||
fig.colorbar(pic2)
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
#fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
|
||||
#pic1 = axes[0].scatter(grid2[:, 0], grid2[:, 1], c=input_data2[0, 0, :, -1])
|
||||
#axes[0].set_title("Real")
|
||||
#fig.colorbar(pic1)
|
||||
#plt.subplot(1, 2, 2)
|
||||
#pic2 = axes[1].scatter(grid2[:, 0], grid2[:, 1], c=output[0, 0, :, -1])
|
||||
#axes[1].set_title("Autoencoder not re-trained")
|
||||
#fig.colorbar(pic2)
|
||||
#plt.tight_layout()
|
||||
#plt.show()
|
||||
|
||||
# calculate l2 error
|
||||
print(f'l2 error: {l2_error(input_data2[0, 0, :, -1], output[0, 0, :, -1]):.2%}')
|
||||
|
||||
Reference in New Issue
Block a user