New Residual Model and Fix relative import
* Adding Residual MLP * Adding test Residual MLP * Modified relative import Continuous Conv
This commit is contained in:
committed by
Nicola Demo
parent
ba7371f350
commit
17464ceca9
@@ -2,7 +2,6 @@
|
||||
from .convolution import BaseContinuousConv
|
||||
from .utils_convolution import check_point, map_points_
|
||||
from .integral import Integral
|
||||
from ..feed_forward import FeedForward
|
||||
import torch
|
||||
|
||||
|
||||
@@ -34,8 +33,8 @@ class ContinuousConvBlock(BaseContinuousConv):
|
||||
:param stride: Stride for the filter.
|
||||
:type stride: dict
|
||||
:param model: Neural network for inner parametrization,
|
||||
defaults to None. If None, pina.FeedForward is used, more
|
||||
on https://mathlab.github.io/PINA/_rst/fnn.html.
|
||||
defaults to None. If None, a default multilayer perceptron
|
||||
is used, see BaseContinuousConv.DefaultKernel.
|
||||
:type model: torch.nn.Module, optional
|
||||
:param optimize: Flag for performing optimization on the continuous
|
||||
filter, defaults to False. The flag `optimize=True` should be
|
||||
@@ -152,7 +151,7 @@ class ContinuousConvBlock(BaseContinuousConv):
|
||||
nets = []
|
||||
if self._net is None:
|
||||
for _ in range(self._input_numb_field * self._output_numb_field):
|
||||
tmp = FeedForward(len(self._dim), 1)
|
||||
tmp = ContinuousConvBlock.DefaultKernel(len(self._dim), 1)
|
||||
nets.append(tmp)
|
||||
else:
|
||||
if not isinstance(model, object):
|
||||
|
||||
Reference in New Issue
Block a user