New Residual Model and Fix relative import

* Adding Residual MLP
* Adding test Residual MLP
* Modified relative import Continuous Conv
This commit is contained in:
Dario Coscia
2023-09-13 12:45:22 +02:00
committed by Nicola Demo
parent ba7371f350
commit 17464ceca9
7 changed files with 211 additions and 9 deletions

View File

@@ -2,7 +2,6 @@
from .convolution import BaseContinuousConv
from .utils_convolution import check_point, map_points_
from .integral import Integral
from ..feed_forward import FeedForward
import torch
@@ -34,8 +33,8 @@ class ContinuousConvBlock(BaseContinuousConv):
:param stride: Stride for the filter.
:type stride: dict
:param model: Neural network for inner parametrization,
defaults to None. If None, pina.FeedForward is used, more
on https://mathlab.github.io/PINA/_rst/fnn.html.
defaults to None. If None, a default multilayer perceptron
is used, see BaseContinuousConv.DefaultKernel.
:type model: torch.nn.Module, optional
:param optimize: Flag for performing optimization on the continuous
filter, defaults to False. The flag `optimize=True` should be
@@ -152,7 +151,7 @@ class ContinuousConvBlock(BaseContinuousConv):
nets = []
if self._net is None:
for _ in range(self._input_numb_field * self._output_numb_field):
tmp = FeedForward(len(self._dim), 1)
tmp = ContinuousConvBlock.DefaultKernel(len(self._dim), 1)
nets.append(tmp)
else:
if not isinstance(model, object):