fix some codacy warnings
This commit is contained in:
@@ -1,11 +1,17 @@
|
||||
from torch.utils.data import DataLoader
|
||||
"""DataLoader module for PinaDataset."""
|
||||
|
||||
import itertools
|
||||
from functools import partial
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from torch.utils.data.sampler import SequentialSampler
|
||||
import torch
|
||||
|
||||
|
||||
class DummyDataloader:
|
||||
"""
|
||||
DataLoader that returns the entire dataset in a single batch.
|
||||
"""
|
||||
|
||||
def __init__(self, dataset):
|
||||
"""
|
||||
@@ -24,18 +30,18 @@ class DummyDataloader:
|
||||
.. note::
|
||||
This dataloader is used when the batch size is ``None``.
|
||||
"""
|
||||
print("Using DummyDataloader")
|
||||
if (
|
||||
torch.distributed.is_available()
|
||||
and torch.distributed.is_initialized()
|
||||
):
|
||||
# Handle distributed environment
|
||||
if PinaSampler.is_distributed():
|
||||
# Get rank and world size
|
||||
rank = torch.distributed.get_rank()
|
||||
world_size = torch.distributed.get_world_size()
|
||||
# Ensure dataset is large enough
|
||||
if len(dataset) < world_size:
|
||||
raise RuntimeError(
|
||||
"Dimension of the dataset smaller than world size."
|
||||
" Increase the size of the partition or use a single GPU"
|
||||
)
|
||||
# Split dataset among processes
|
||||
idx, i = [], rank
|
||||
while i < len(dataset):
|
||||
idx.append(i)
|
||||
@@ -43,15 +49,28 @@ class DummyDataloader:
|
||||
else:
|
||||
idx = list(range(len(dataset)))
|
||||
|
||||
self.dataset = dataset._getitem_from_list(idx)
|
||||
self.dataset = dataset.getitem_from_list(idx)
|
||||
|
||||
def __iter__(self):
|
||||
"""
|
||||
Iterate over the dataloader.
|
||||
"""
|
||||
return self
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
Return the length of the dataloader, which is always 1.
|
||||
:return: The length of the dataloader.
|
||||
:rtype: int
|
||||
"""
|
||||
return 1
|
||||
|
||||
def __next__(self):
|
||||
"""
|
||||
Return the entire dataset as a single batch.
|
||||
:return: The entire dataset.
|
||||
:rtype: dict
|
||||
"""
|
||||
return self.dataset
|
||||
|
||||
|
||||
@@ -70,10 +89,7 @@ class PinaSampler:
|
||||
:rtype: :class:`torch.utils.data.Sampler`
|
||||
"""
|
||||
|
||||
if (
|
||||
torch.distributed.is_available()
|
||||
and torch.distributed.is_initialized()
|
||||
):
|
||||
if cls.is_distributed():
|
||||
sampler = DistributedSampler(dataset, shuffle=shuffle)
|
||||
else:
|
||||
if shuffle:
|
||||
@@ -82,6 +98,18 @@ class PinaSampler:
|
||||
sampler = SequentialSampler(dataset)
|
||||
return sampler
|
||||
|
||||
@staticmethod
|
||||
def is_distributed():
|
||||
"""
|
||||
Check if the sampler is distributed.
|
||||
:return: True if the sampler is distributed, False otherwise.
|
||||
:rtype: bool
|
||||
"""
|
||||
return (
|
||||
torch.distributed.is_available()
|
||||
and torch.distributed.is_initialized()
|
||||
)
|
||||
|
||||
|
||||
def _collect_items(batch):
|
||||
"""
|
||||
@@ -97,11 +125,12 @@ def _collect_items(batch):
|
||||
|
||||
def collate_fn_custom(batch, dataset):
|
||||
"""
|
||||
Override the default collate function to handle datasets without automatic batching.
|
||||
Override the default collate function to handle datasets without automatic
|
||||
batching.
|
||||
:param batch: List of indices from the dataset.
|
||||
:param dataset: The PinaDataset instance (must be provided).
|
||||
"""
|
||||
return dataset._getitem_from_list(batch)
|
||||
return dataset.getitem_from_list(batch)
|
||||
|
||||
|
||||
def collate_fn_default(batch, stack_fn):
|
||||
@@ -109,7 +138,6 @@ def collate_fn_default(batch, stack_fn):
|
||||
Default collate function that simply returns the batch as is.
|
||||
:param batch: List of data samples.
|
||||
"""
|
||||
print("Using default collate function")
|
||||
to_return = _collect_items(batch)
|
||||
return {k: stack_fn[k](v) for k, v in to_return.items()}
|
||||
|
||||
@@ -123,30 +151,36 @@ class PinaDataLoader:
|
||||
self,
|
||||
dataset_dict,
|
||||
batch_size,
|
||||
shuffle=False,
|
||||
num_workers=0,
|
||||
collate_fn=None,
|
||||
shuffle=False,
|
||||
common_batch_size=True,
|
||||
separate_conditions=False,
|
||||
):
|
||||
self.dataset_dict = dataset_dict
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
self.num_workers = num_workers
|
||||
self.collate_fn = collate_fn
|
||||
self.shuffle = shuffle
|
||||
self.separate_conditions = separate_conditions
|
||||
|
||||
# Batch size None means we want to load the entire dataset in a single
|
||||
# batch
|
||||
if batch_size is None:
|
||||
batch_size_per_dataset = {
|
||||
split: None for split in dataset_dict.keys()
|
||||
}
|
||||
else:
|
||||
if common_batch_size:
|
||||
# Compute batch size per dataset
|
||||
if common_batch_size: # all datasets have the same batch size
|
||||
# (the sum of the batch sizes is equal to
|
||||
# n_conditions * batch_size)
|
||||
batch_size_per_dataset = {
|
||||
split: batch_size for split in dataset_dict.keys()
|
||||
}
|
||||
else:
|
||||
else: # batch size proportional to dataset size (the sum of the
|
||||
# batch sizes is equal to the specified batch size)
|
||||
batch_size_per_dataset = self._compute_batch_size()
|
||||
|
||||
# Creaete a dataloader per dataset
|
||||
self.dataloaders = {
|
||||
split: self._create_dataloader(
|
||||
dataset, batch_size_per_dataset[split]
|
||||
@@ -158,21 +192,26 @@ class PinaDataLoader:
|
||||
"""
|
||||
Compute an appropriate batch size for the given dataset.
|
||||
"""
|
||||
# Compute number of elements per dataset
|
||||
elements_per_dataset = {
|
||||
dataset_name: len(dataset)
|
||||
for dataset_name, dataset in self.dataset_dict.items()
|
||||
}
|
||||
# Compute the total number of elements
|
||||
total_elements = sum(el for el in elements_per_dataset.values())
|
||||
# Compute the portion of each dataset
|
||||
portion_per_dataset = {
|
||||
name: el / total_elements
|
||||
for name, el in elements_per_dataset.items()
|
||||
}
|
||||
# Compute batch size per dataset. Ensure at least 1 element per
|
||||
# dataset.
|
||||
batch_size_per_dataset = {
|
||||
name: max(1, int(portion * self.batch_size))
|
||||
for name, portion in portion_per_dataset.items()
|
||||
}
|
||||
# Adjust batch sizes to match the specified total batch size
|
||||
tot_el_per_batch = sum(el for el in batch_size_per_dataset.values())
|
||||
|
||||
if self.batch_size > tot_el_per_batch:
|
||||
difference = self.batch_size - tot_el_per_batch
|
||||
while difference > 0:
|
||||
@@ -194,33 +233,45 @@ class PinaDataLoader:
|
||||
return batch_size_per_dataset
|
||||
|
||||
def _create_dataloader(self, dataset, batch_size):
|
||||
print(batch_size)
|
||||
if batch_size is None:
|
||||
"""
|
||||
Create the dataloader for the given dataset.
|
||||
"""
|
||||
# If batch size is None, use DummyDataloader
|
||||
if batch_size is None or batch_size >= len(dataset):
|
||||
return DummyDataloader(dataset)
|
||||
|
||||
# Determine the appropriate collate function
|
||||
if not dataset.automatic_batching:
|
||||
collate_fn = partial(collate_fn_custom, dataset=dataset)
|
||||
else:
|
||||
collate_fn = partial(collate_fn_default, stack_fn=dataset.stack_fn)
|
||||
|
||||
# Create and return the dataloader
|
||||
return DataLoader(
|
||||
dataset,
|
||||
batch_size=batch_size,
|
||||
num_workers=self.num_workers,
|
||||
collate_fn=collate_fn,
|
||||
num_workers=self.num_workers,
|
||||
sampler=PinaSampler(dataset, shuffle=self.shuffle),
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
Return the length of the dataloader.
|
||||
:return: The length of the dataloader.
|
||||
:rtype: int
|
||||
"""
|
||||
# If separate conditions, return sum of lengths of all dataloaders
|
||||
# else, return max length among dataloaders
|
||||
if self.separate_conditions:
|
||||
return sum(len(dl) for dl in self.dataloaders.values())
|
||||
return max(len(dl) for dl in self.dataloaders.values())
|
||||
|
||||
def __iter__(self):
|
||||
"""
|
||||
Restituisce un iteratore che produce dizionari di batch.
|
||||
|
||||
Itera per un numero di passi pari al dataloader più lungo (come da __len__)
|
||||
e fa ricominciare i dataloader più corti quando si esauriscono.
|
||||
Iterate over the dataloader.
|
||||
:return: Yields batches from the dataloader.
|
||||
:rtype: dict
|
||||
"""
|
||||
if self.separate_conditions:
|
||||
for split, dl in self.dataloaders.items():
|
||||
@@ -228,15 +279,19 @@ class PinaDataLoader:
|
||||
yield {split: batch}
|
||||
return
|
||||
|
||||
iterators = {split: iter(dl) for split, dl in self.dataloaders.items()}
|
||||
iterators = {
|
||||
split: itertools.cycle(dl) for split, dl in self.dataloaders.items()
|
||||
}
|
||||
|
||||
for _ in range(len(self)):
|
||||
batch_dict = {}
|
||||
for split, it in iterators.items():
|
||||
try:
|
||||
batch = next(it)
|
||||
except StopIteration:
|
||||
new_it = iter(self.dataloaders[split])
|
||||
iterators[split] = new_it
|
||||
batch = next(new_it)
|
||||
|
||||
# Iterate through each dataloader and get the next batch
|
||||
batch = next(it, None)
|
||||
# Check if batch is None (in case of uneven lengths)
|
||||
if batch is None:
|
||||
return
|
||||
|
||||
batch_dict[split] = batch
|
||||
yield batch_dict
|
||||
|
||||
Reference in New Issue
Block a user