Implement custom sampling logic

This commit is contained in:
FilippoOlivo
2025-02-07 15:56:04 +01:00
committed by Nicola Demo
parent f578b2ed12
commit 195224794f
4 changed files with 114 additions and 46 deletions

View File

@@ -2,11 +2,12 @@
from abc import ABCMeta, abstractmethod
from ..utils import check_consistency
from ..domain import DomainInterface
from ..domain import DomainInterface, CartesianDomain
from ..condition.domain_equation_condition import DomainEquationCondition
from ..condition import InputPointsEquationCondition
from copy import deepcopy
from pina import LabelTensor
from .. import LabelTensor
from ..utils import merge_tensors
class AbstractProblem(metaclass=ABCMeta):
@@ -21,7 +22,7 @@ class AbstractProblem(metaclass=ABCMeta):
def __init__(self):
self.discretised_domains = {}
self._discretised_domains = {}
# create collector to manage problem data
# create hook conditions <-> problems
@@ -53,6 +54,10 @@ class AbstractProblem(metaclass=ABCMeta):
def batching_dimension(self, value):
self._batching_dimension = value
@property
def discretised_domains(self):
return self._discretised_domains
# TODO this should be erase when dataloading will interface collector,
# kept only for back compatibility
@property
@@ -62,7 +67,7 @@ class AbstractProblem(metaclass=ABCMeta):
if hasattr(cond, "input_points"):
to_return[cond_name] = cond.input_points
elif hasattr(cond, "domain"):
to_return[cond_name] = self.discretised_domains[cond.domain]
to_return[cond_name] = self._discretised_domains[cond.domain]
return to_return
def __deepcopy__(self, memo):
@@ -139,9 +144,10 @@ class AbstractProblem(metaclass=ABCMeta):
return self.conditions
def discretise_domain(self,
n,
n=None,
mode="random",
domains="all"):
domains="all",
sample_rules=None):
"""
Generate a set of points to span the `Location` of all the conditions of
the problem.
@@ -153,6 +159,8 @@ class AbstractProblem(metaclass=ABCMeta):
Available modes include: random sampling, ``random``;
latin hypercube sampling, ``latin`` or ``lh``;
chebyshev sampling, ``chebyshev``; grid sampling ``grid``.
:param variables: variable(s) to sample, defaults to 'all'.
:type variables: str | list[str]
:param domains: problem's domain from where to sample, defaults to 'all'.
:type domains: str | list[str]
@@ -170,25 +178,56 @@ class AbstractProblem(metaclass=ABCMeta):
"""
# check consistecy n, mode, variables, locations
check_consistency(n, int)
check_consistency(mode, str)
if sample_rules is not None:
check_consistency(sample_rules, dict)
if mode is not None:
check_consistency(mode, str)
check_consistency(domains, (list, str))
# check correct sampling mode
# if mode not in DomainInterface.available_sampling_modes:
# raise TypeError(f"mode {mode} not valid.")
# check correct location
if domains == "all":
domains = self.domains.keys()
elif not isinstance(domains, (list)):
domains = [domains]
if n is not None and sample_rules is None:
self._apply_default_discretization(n, mode, domains)
if n is None and sample_rules is not None:
self._apply_custom_discretization(sample_rules, domains)
elif n is not None and sample_rules is not None:
raise RuntimeError(
"You can't specify both n and sample_rules at the same time."
)
elif n is None and sample_rules is None:
raise RuntimeError(
"You have to specify either n or sample_rules."
)
def _apply_default_discretization(self, n, mode, domains):
for domain in domains:
self.discretised_domains[domain] = (
self.domains[domain].sample(n, mode)
self.domains[domain].sample(n, mode).sort_labels()
)
def _apply_custom_discretization(self, sample_rules, domains):
if sorted(list(sample_rules.keys())) != sorted(self.input_variables):
raise RuntimeError(
"The keys of the sample_rules dictionary must be the same as "
"the input variables."
)
for domain in domains:
if not isinstance(self.domains[domain], CartesianDomain):
raise RuntimeError(
"Custom discretisation can be applied only on Cartesian "
"domains")
discretised_tensor = []
for var, rules in sample_rules.items():
n, mode = rules['n'], rules['mode']
points = self.domains[domain].sample(n, mode, var)
discretised_tensor.append(points)
self.discretised_domains[domain] = merge_tensors(
discretised_tensor).sort_labels()
def add_points(self, new_points_dict):
"""
Add input points to a sampled condition