Implement custom sampling logic
This commit is contained in:
committed by
Nicola Demo
parent
f578b2ed12
commit
195224794f
@@ -160,7 +160,7 @@ class CartesianDomain(DomainInterface):
|
||||
pts_variable.labels = [variable]
|
||||
|
||||
tmp.append(pts_variable)
|
||||
|
||||
if tmp:
|
||||
result = tmp[0]
|
||||
for i in tmp[1:]:
|
||||
result = result.append(i, mode="cross")
|
||||
@@ -242,6 +242,8 @@ class CartesianDomain(DomainInterface):
|
||||
|
||||
if self.fixed_ and (not self.range_):
|
||||
return _single_points_sample(n, variables)
|
||||
if isinstance(variables, str) and variables in self.fixed_.keys():
|
||||
return _single_points_sample(n, variables)
|
||||
|
||||
if mode in ["grid", "chebyshev"]:
|
||||
return _1d_sampler(n, mode, variables).extract(variables)
|
||||
|
||||
@@ -2,11 +2,12 @@
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from ..utils import check_consistency
|
||||
from ..domain import DomainInterface
|
||||
from ..domain import DomainInterface, CartesianDomain
|
||||
from ..condition.domain_equation_condition import DomainEquationCondition
|
||||
from ..condition import InputPointsEquationCondition
|
||||
from copy import deepcopy
|
||||
from pina import LabelTensor
|
||||
from .. import LabelTensor
|
||||
from ..utils import merge_tensors
|
||||
|
||||
|
||||
class AbstractProblem(metaclass=ABCMeta):
|
||||
@@ -21,7 +22,7 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
|
||||
def __init__(self):
|
||||
|
||||
self.discretised_domains = {}
|
||||
self._discretised_domains = {}
|
||||
# create collector to manage problem data
|
||||
|
||||
# create hook conditions <-> problems
|
||||
@@ -53,6 +54,10 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
def batching_dimension(self, value):
|
||||
self._batching_dimension = value
|
||||
|
||||
@property
|
||||
def discretised_domains(self):
|
||||
return self._discretised_domains
|
||||
|
||||
# TODO this should be erase when dataloading will interface collector,
|
||||
# kept only for back compatibility
|
||||
@property
|
||||
@@ -62,7 +67,7 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
if hasattr(cond, "input_points"):
|
||||
to_return[cond_name] = cond.input_points
|
||||
elif hasattr(cond, "domain"):
|
||||
to_return[cond_name] = self.discretised_domains[cond.domain]
|
||||
to_return[cond_name] = self._discretised_domains[cond.domain]
|
||||
return to_return
|
||||
|
||||
def __deepcopy__(self, memo):
|
||||
@@ -139,9 +144,10 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
return self.conditions
|
||||
|
||||
def discretise_domain(self,
|
||||
n,
|
||||
n=None,
|
||||
mode="random",
|
||||
domains="all"):
|
||||
domains="all",
|
||||
sample_rules=None):
|
||||
"""
|
||||
Generate a set of points to span the `Location` of all the conditions of
|
||||
the problem.
|
||||
@@ -153,6 +159,8 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
Available modes include: random sampling, ``random``;
|
||||
latin hypercube sampling, ``latin`` or ``lh``;
|
||||
chebyshev sampling, ``chebyshev``; grid sampling ``grid``.
|
||||
:param variables: variable(s) to sample, defaults to 'all'.
|
||||
:type variables: str | list[str]
|
||||
:param domains: problem's domain from where to sample, defaults to 'all'.
|
||||
:type domains: str | list[str]
|
||||
|
||||
@@ -170,25 +178,56 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
"""
|
||||
|
||||
# check consistecy n, mode, variables, locations
|
||||
check_consistency(n, int)
|
||||
if sample_rules is not None:
|
||||
check_consistency(sample_rules, dict)
|
||||
if mode is not None:
|
||||
check_consistency(mode, str)
|
||||
check_consistency(domains, (list, str))
|
||||
|
||||
# check correct sampling mode
|
||||
# if mode not in DomainInterface.available_sampling_modes:
|
||||
# raise TypeError(f"mode {mode} not valid.")
|
||||
|
||||
# check correct location
|
||||
if domains == "all":
|
||||
domains = self.domains.keys()
|
||||
elif not isinstance(domains, (list)):
|
||||
domains = [domains]
|
||||
if n is not None and sample_rules is None:
|
||||
self._apply_default_discretization(n, mode, domains)
|
||||
if n is None and sample_rules is not None:
|
||||
self._apply_custom_discretization(sample_rules, domains)
|
||||
elif n is not None and sample_rules is not None:
|
||||
raise RuntimeError(
|
||||
"You can't specify both n and sample_rules at the same time."
|
||||
)
|
||||
elif n is None and sample_rules is None:
|
||||
raise RuntimeError(
|
||||
"You have to specify either n or sample_rules."
|
||||
)
|
||||
|
||||
def _apply_default_discretization(self, n, mode, domains):
|
||||
for domain in domains:
|
||||
self.discretised_domains[domain] = (
|
||||
self.domains[domain].sample(n, mode)
|
||||
self.domains[domain].sample(n, mode).sort_labels()
|
||||
)
|
||||
|
||||
def _apply_custom_discretization(self, sample_rules, domains):
|
||||
if sorted(list(sample_rules.keys())) != sorted(self.input_variables):
|
||||
raise RuntimeError(
|
||||
"The keys of the sample_rules dictionary must be the same as "
|
||||
"the input variables."
|
||||
)
|
||||
for domain in domains:
|
||||
if not isinstance(self.domains[domain], CartesianDomain):
|
||||
raise RuntimeError(
|
||||
"Custom discretisation can be applied only on Cartesian "
|
||||
"domains")
|
||||
discretised_tensor = []
|
||||
for var, rules in sample_rules.items():
|
||||
n, mode = rules['n'], rules['mode']
|
||||
points = self.domains[domain].sample(n, mode, var)
|
||||
discretised_tensor.append(points)
|
||||
|
||||
self.discretised_domains[domain] = merge_tensors(
|
||||
discretised_tensor).sort_labels()
|
||||
|
||||
def add_points(self, new_points_dict):
|
||||
"""
|
||||
Add input points to a sampled condition
|
||||
|
||||
@@ -11,22 +11,23 @@ from pina.operators import laplacian
|
||||
from pina.collector import Collector
|
||||
|
||||
|
||||
# def test_supervised_tensor_collector():
|
||||
# class SupervisedProblem(AbstractProblem):
|
||||
# output_variables = None
|
||||
# conditions = {
|
||||
# 'data1' : Condition(input_points=torch.rand((10,2)),
|
||||
# output_points=torch.rand((10,2))),
|
||||
# 'data2' : Condition(input_points=torch.rand((20,2)),
|
||||
# output_points=torch.rand((20,2))),
|
||||
# 'data3' : Condition(input_points=torch.rand((30,2)),
|
||||
# output_points=torch.rand((30,2))),
|
||||
# }
|
||||
# problem = SupervisedProblem()
|
||||
# collector = Collector(problem)
|
||||
# for v in collector.conditions_name.values():
|
||||
# assert v in problem.conditions.keys()
|
||||
# assert all(collector._is_conditions_ready.values())
|
||||
def test_supervised_tensor_collector():
|
||||
class SupervisedProblem(AbstractProblem):
|
||||
output_variables = None
|
||||
conditions = {
|
||||
'data1': Condition(input_points=torch.rand((10, 2)),
|
||||
output_points=torch.rand((10, 2))),
|
||||
'data2': Condition(input_points=torch.rand((20, 2)),
|
||||
output_points=torch.rand((20, 2))),
|
||||
'data3': Condition(input_points=torch.rand((30, 2)),
|
||||
output_points=torch.rand((30, 2))),
|
||||
}
|
||||
|
||||
problem = SupervisedProblem()
|
||||
collector = Collector(problem)
|
||||
for v in collector.conditions_name.values():
|
||||
assert v in problem.conditions.keys()
|
||||
|
||||
|
||||
def test_pinn_collector():
|
||||
def laplace_equation(input_, output_):
|
||||
|
||||
@@ -2,6 +2,8 @@ import torch
|
||||
import pytest
|
||||
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
||||
from pina import LabelTensor
|
||||
from pina.domain import Union
|
||||
from pina.domain import CartesianDomain
|
||||
|
||||
|
||||
def test_discretise_domain():
|
||||
@@ -29,18 +31,6 @@ def test_discretise_domain():
|
||||
poisson_problem.discretise_domain(n)
|
||||
|
||||
|
||||
'''
|
||||
def test_sampling_few_variables():
|
||||
n = 10
|
||||
poisson_problem = Poisson()
|
||||
poisson_problem.discretise_domain(n,
|
||||
'grid',
|
||||
domains=['D'],
|
||||
variables=['x'])
|
||||
assert poisson_problem.discretised_domains['D'].shape[1] == 1
|
||||
'''
|
||||
|
||||
|
||||
def test_variables_correct_order_sampling():
|
||||
n = 10
|
||||
poisson_problem = Poisson()
|
||||
@@ -66,3 +56,39 @@ def test_add_points():
|
||||
new_pts.extract('x'))
|
||||
assert torch.isclose(poisson_problem.discretised_domains['D'].extract('y'),
|
||||
new_pts.extract('y'))
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"mode",
|
||||
[
|
||||
'random',
|
||||
'grid'
|
||||
]
|
||||
)
|
||||
def test_custom_sampling_logic(mode):
|
||||
poisson_problem = Poisson()
|
||||
sampling_rules = {
|
||||
'x': {'n': 100, 'mode': mode},
|
||||
'y': {'n': 50, 'mode': mode}
|
||||
}
|
||||
poisson_problem.discretise_domain(sample_rules=sampling_rules)
|
||||
for domain in ['g1', 'g2', 'g3', 'g4']:
|
||||
assert poisson_problem.discretised_domains[domain].shape[0] == 100 * 50
|
||||
assert poisson_problem.discretised_domains[domain].labels == ['x', 'y']
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"mode",
|
||||
[
|
||||
'random',
|
||||
'grid'
|
||||
]
|
||||
)
|
||||
def test_wrong_custom_sampling_logic(mode):
|
||||
d2 = CartesianDomain({'x': [1,2], 'y': [0,1] })
|
||||
poisson_problem = Poisson()
|
||||
poisson_problem.domains['D'] = Union([poisson_problem.domains['D'], d2])
|
||||
sampling_rules = {
|
||||
'x': {'n': 100, 'mode': mode},
|
||||
'y': {'n': 50, 'mode': mode}
|
||||
}
|
||||
with pytest.raises(RuntimeError):
|
||||
poisson_problem.discretise_domain(sample_rules=sampling_rules)
|
||||
Reference in New Issue
Block a user