Implement custom sampling logic

This commit is contained in:
FilippoOlivo
2025-02-07 15:56:04 +01:00
committed by Nicola Demo
parent f578b2ed12
commit 195224794f
4 changed files with 114 additions and 46 deletions

View File

@@ -160,10 +160,10 @@ class CartesianDomain(DomainInterface):
pts_variable.labels = [variable]
tmp.append(pts_variable)
result = tmp[0]
for i in tmp[1:]:
result = result.append(i, mode="cross")
if tmp:
result = tmp[0]
for i in tmp[1:]:
result = result.append(i, mode="cross")
for variable in variables:
if variable in self.fixed_.keys():
@@ -242,6 +242,8 @@ class CartesianDomain(DomainInterface):
if self.fixed_ and (not self.range_):
return _single_points_sample(n, variables)
if isinstance(variables, str) and variables in self.fixed_.keys():
return _single_points_sample(n, variables)
if mode in ["grid", "chebyshev"]:
return _1d_sampler(n, mode, variables).extract(variables)

View File

@@ -2,11 +2,12 @@
from abc import ABCMeta, abstractmethod
from ..utils import check_consistency
from ..domain import DomainInterface
from ..domain import DomainInterface, CartesianDomain
from ..condition.domain_equation_condition import DomainEquationCondition
from ..condition import InputPointsEquationCondition
from copy import deepcopy
from pina import LabelTensor
from .. import LabelTensor
from ..utils import merge_tensors
class AbstractProblem(metaclass=ABCMeta):
@@ -21,7 +22,7 @@ class AbstractProblem(metaclass=ABCMeta):
def __init__(self):
self.discretised_domains = {}
self._discretised_domains = {}
# create collector to manage problem data
# create hook conditions <-> problems
@@ -53,6 +54,10 @@ class AbstractProblem(metaclass=ABCMeta):
def batching_dimension(self, value):
self._batching_dimension = value
@property
def discretised_domains(self):
return self._discretised_domains
# TODO this should be erase when dataloading will interface collector,
# kept only for back compatibility
@property
@@ -62,7 +67,7 @@ class AbstractProblem(metaclass=ABCMeta):
if hasattr(cond, "input_points"):
to_return[cond_name] = cond.input_points
elif hasattr(cond, "domain"):
to_return[cond_name] = self.discretised_domains[cond.domain]
to_return[cond_name] = self._discretised_domains[cond.domain]
return to_return
def __deepcopy__(self, memo):
@@ -139,9 +144,10 @@ class AbstractProblem(metaclass=ABCMeta):
return self.conditions
def discretise_domain(self,
n,
n=None,
mode="random",
domains="all"):
domains="all",
sample_rules=None):
"""
Generate a set of points to span the `Location` of all the conditions of
the problem.
@@ -153,6 +159,8 @@ class AbstractProblem(metaclass=ABCMeta):
Available modes include: random sampling, ``random``;
latin hypercube sampling, ``latin`` or ``lh``;
chebyshev sampling, ``chebyshev``; grid sampling ``grid``.
:param variables: variable(s) to sample, defaults to 'all'.
:type variables: str | list[str]
:param domains: problem's domain from where to sample, defaults to 'all'.
:type domains: str | list[str]
@@ -170,25 +178,56 @@ class AbstractProblem(metaclass=ABCMeta):
"""
# check consistecy n, mode, variables, locations
check_consistency(n, int)
check_consistency(mode, str)
if sample_rules is not None:
check_consistency(sample_rules, dict)
if mode is not None:
check_consistency(mode, str)
check_consistency(domains, (list, str))
# check correct sampling mode
# if mode not in DomainInterface.available_sampling_modes:
# raise TypeError(f"mode {mode} not valid.")
# check correct location
if domains == "all":
domains = self.domains.keys()
elif not isinstance(domains, (list)):
domains = [domains]
if n is not None and sample_rules is None:
self._apply_default_discretization(n, mode, domains)
if n is None and sample_rules is not None:
self._apply_custom_discretization(sample_rules, domains)
elif n is not None and sample_rules is not None:
raise RuntimeError(
"You can't specify both n and sample_rules at the same time."
)
elif n is None and sample_rules is None:
raise RuntimeError(
"You have to specify either n or sample_rules."
)
def _apply_default_discretization(self, n, mode, domains):
for domain in domains:
self.discretised_domains[domain] = (
self.domains[domain].sample(n, mode)
self.domains[domain].sample(n, mode).sort_labels()
)
def _apply_custom_discretization(self, sample_rules, domains):
if sorted(list(sample_rules.keys())) != sorted(self.input_variables):
raise RuntimeError(
"The keys of the sample_rules dictionary must be the same as "
"the input variables."
)
for domain in domains:
if not isinstance(self.domains[domain], CartesianDomain):
raise RuntimeError(
"Custom discretisation can be applied only on Cartesian "
"domains")
discretised_tensor = []
for var, rules in sample_rules.items():
n, mode = rules['n'], rules['mode']
points = self.domains[domain].sample(n, mode, var)
discretised_tensor.append(points)
self.discretised_domains[domain] = merge_tensors(
discretised_tensor).sort_labels()
def add_points(self, new_points_dict):
"""
Add input points to a sampled condition

View File

@@ -11,22 +11,23 @@ from pina.operators import laplacian
from pina.collector import Collector
# def test_supervised_tensor_collector():
# class SupervisedProblem(AbstractProblem):
# output_variables = None
# conditions = {
# 'data1' : Condition(input_points=torch.rand((10,2)),
# output_points=torch.rand((10,2))),
# 'data2' : Condition(input_points=torch.rand((20,2)),
# output_points=torch.rand((20,2))),
# 'data3' : Condition(input_points=torch.rand((30,2)),
# output_points=torch.rand((30,2))),
# }
# problem = SupervisedProblem()
# collector = Collector(problem)
# for v in collector.conditions_name.values():
# assert v in problem.conditions.keys()
# assert all(collector._is_conditions_ready.values())
def test_supervised_tensor_collector():
class SupervisedProblem(AbstractProblem):
output_variables = None
conditions = {
'data1': Condition(input_points=torch.rand((10, 2)),
output_points=torch.rand((10, 2))),
'data2': Condition(input_points=torch.rand((20, 2)),
output_points=torch.rand((20, 2))),
'data3': Condition(input_points=torch.rand((30, 2)),
output_points=torch.rand((30, 2))),
}
problem = SupervisedProblem()
collector = Collector(problem)
for v in collector.conditions_name.values():
assert v in problem.conditions.keys()
def test_pinn_collector():
def laplace_equation(input_, output_):
@@ -81,7 +82,7 @@ def test_pinn_collector():
def poisson_sol(self, pts):
return -(torch.sin(pts.extract(['x']) * torch.pi) *
torch.sin(pts.extract(['y']) * torch.pi)) / (
2 * torch.pi ** 2)
2 * torch.pi ** 2)
truth_solution = poisson_sol

View File

@@ -2,6 +2,8 @@ import torch
import pytest
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
from pina import LabelTensor
from pina.domain import Union
from pina.domain import CartesianDomain
def test_discretise_domain():
@@ -29,18 +31,6 @@ def test_discretise_domain():
poisson_problem.discretise_domain(n)
'''
def test_sampling_few_variables():
n = 10
poisson_problem = Poisson()
poisson_problem.discretise_domain(n,
'grid',
domains=['D'],
variables=['x'])
assert poisson_problem.discretised_domains['D'].shape[1] == 1
'''
def test_variables_correct_order_sampling():
n = 10
poisson_problem = Poisson()
@@ -66,3 +56,39 @@ def test_add_points():
new_pts.extract('x'))
assert torch.isclose(poisson_problem.discretised_domains['D'].extract('y'),
new_pts.extract('y'))
@pytest.mark.parametrize(
"mode",
[
'random',
'grid'
]
)
def test_custom_sampling_logic(mode):
poisson_problem = Poisson()
sampling_rules = {
'x': {'n': 100, 'mode': mode},
'y': {'n': 50, 'mode': mode}
}
poisson_problem.discretise_domain(sample_rules=sampling_rules)
for domain in ['g1', 'g2', 'g3', 'g4']:
assert poisson_problem.discretised_domains[domain].shape[0] == 100 * 50
assert poisson_problem.discretised_domains[domain].labels == ['x', 'y']
@pytest.mark.parametrize(
"mode",
[
'random',
'grid'
]
)
def test_wrong_custom_sampling_logic(mode):
d2 = CartesianDomain({'x': [1,2], 'y': [0,1] })
poisson_problem = Poisson()
poisson_problem.domains['D'] = Union([poisson_problem.domains['D'], d2])
sampling_rules = {
'x': {'n': 100, 'mode': mode},
'y': {'n': 50, 'mode': mode}
}
with pytest.raises(RuntimeError):
poisson_problem.discretise_domain(sample_rules=sampling_rules)