Refactoring solvers (#541)
* Refactoring solvers * Simplify logic compile * Improve and update doc * Create SupervisedSolverInterface * Specialize SupervisedSolver and ReducedOrderModelSolver * Create EnsembleSolverInterface + EnsembleSupervisedSolver * Create tests ensemble solvers * formatter * codacy * fix issues + speedup test
This commit is contained in:
committed by
FilippoOlivo
parent
fa6fda0bd5
commit
1bb3c125ac
85
pina/solver/supervised_solver/supervised.py
Normal file
85
pina/solver/supervised_solver/supervised.py
Normal file
@@ -0,0 +1,85 @@
|
||||
"""Module for the Supervised solver."""
|
||||
|
||||
from .supervised_solver_interface import SupervisedSolverInterface
|
||||
from ..solver import SingleSolverInterface
|
||||
|
||||
|
||||
class SupervisedSolver(SupervisedSolverInterface, SingleSolverInterface):
|
||||
r"""
|
||||
Supervised Solver solver class. This class implements a Supervised Solver,
|
||||
using a user specified ``model`` to solve a specific ``problem``.
|
||||
|
||||
The Supervised Solver class aims to find a map between the input
|
||||
:math:`\mathbf{s}:\Omega\rightarrow\mathbb{R}^m` and the output
|
||||
:math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`.
|
||||
|
||||
Given a model :math:`\mathcal{M}`, the following loss function is
|
||||
minimized during training:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathbf{u}_i - \mathcal{M}(\mathbf{s}_i)),
|
||||
|
||||
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
In this context, :math:`\mathbf{u}_i` and :math:`\mathbf{s}_i` indicates
|
||||
the will to approximate multiple (discretised) functions given multiple
|
||||
(discretised) input functions.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
loss=None,
|
||||
optimizer=None,
|
||||
scheduler=None,
|
||||
weighting=None,
|
||||
use_lt=True,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`SupervisedSolver` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If ``None``, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If ``None``, no weighting schema is used. Default is ``None``.
|
||||
:param bool use_lt: If ``True``, the solver uses LabelTensors as input.
|
||||
Default is ``True``.
|
||||
"""
|
||||
super().__init__(
|
||||
model=model,
|
||||
problem=problem,
|
||||
loss=loss,
|
||||
optimizer=optimizer,
|
||||
scheduler=scheduler,
|
||||
weighting=weighting,
|
||||
use_lt=use_lt,
|
||||
)
|
||||
|
||||
def loss_data(self, input, target):
|
||||
"""
|
||||
Compute the data loss for the Supervised solver by evaluating the loss
|
||||
between the network's output and the true solution. This method should
|
||||
not be overridden, if not intentionally.
|
||||
|
||||
:param input: The input to the neural network.
|
||||
:type input: LabelTensor | torch.Tensor | Graph | Data
|
||||
:param target: The target to compare with the network's output.
|
||||
:type target: LabelTensor | torch.Tensor | Graph | Data
|
||||
:return: The supervised loss, averaged over the number of observations.
|
||||
:rtype: LabelTensor | torch.Tensor | Graph | Data
|
||||
"""
|
||||
return self._loss_fn(self.forward(input), target)
|
||||
Reference in New Issue
Block a user