Correct codacy warnings

This commit is contained in:
FilippoOlivo
2024-10-22 14:26:39 +02:00
committed by Nicola Demo
parent c9304fb9bb
commit 1bc1b3a580
15 changed files with 252 additions and 210 deletions

View File

@@ -17,15 +17,13 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
LightningModule methods.
"""
def __init__(
self,
models,
problem,
optimizers,
schedulers,
extra_features,
use_lt=True
):
def __init__(self,
models,
problem,
optimizers,
schedulers,
extra_features,
use_lt=True):
"""
:param model: A torch neural network model instance.
:type model: torch.nn.Module
@@ -55,10 +53,11 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
if use_lt is True:
for idx in range(len(models)):
models[idx] = Network(
model = models[idx],
model=models[idx],
input_variables=problem.input_variables,
output_variables=problem.output_variables,
extra_features=extra_features, )
extra_features=extra_features,
)
#Check scheduler consistency + encapsulation
if not isinstance(schedulers, list):
@@ -79,11 +78,9 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
# check length consistency optimizers
if len_model != len_optimizer:
raise ValueError(
"You must define one optimizer for each model."
f"Got {len_model} models, and {len_optimizer}"
" optimizers."
)
raise ValueError("You must define one optimizer for each model."
f"Got {len_model} models, and {len_optimizer}"
" optimizers.")
# extra features handling
@@ -92,7 +89,6 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
self._pina_schedulers = schedulers
self._pina_problem = problem
@abstractmethod
def forward(self, *args, **kwargs):
pass
@@ -142,5 +138,8 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
TODO
"""
for _, condition in problem.conditions.items():
if not set(self.accepted_condition_types).issubset(condition.condition_type):
raise ValueError(f'{self.__name__} support only dose not support condition {condition.condition_type}')
if not set(self.accepted_condition_types).issubset(
condition.condition_type):
raise ValueError(
f'{self.__name__} support only dose not support condition {condition.condition_type}'
)