Correct codacy warnings
This commit is contained in:
committed by
Nicola Demo
parent
c9304fb9bb
commit
1bc1b3a580
@@ -29,34 +29,49 @@ class Poisson(SpatialProblem):
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
domain=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
domain=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
domain=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
domain=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_),
|
||||
'data2': Condition(
|
||||
input_points=in2_,
|
||||
output_points=out2_),
|
||||
'unsupervised': Condition(
|
||||
'gamma1':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 1
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 0
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 1,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 0,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D':
|
||||
Condition(input_points=LabelTensor(torch.rand(size=(100, 2)),
|
||||
['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data':
|
||||
Condition(input_points=in_, output_points=out_),
|
||||
'data2':
|
||||
Condition(input_points=in2_, output_points=out2_),
|
||||
'unsupervised':
|
||||
Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(45, 2)), ['x', 'y']),
|
||||
conditional_variables=LabelTensor(torch.ones(size=(45, 1)), ['alpha']),
|
||||
conditional_variables=LabelTensor(torch.ones(size=(45, 1)),
|
||||
['alpha']),
|
||||
),
|
||||
'unsupervised2': Condition(
|
||||
'unsupervised2':
|
||||
Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(90, 2)), ['x', 'y']),
|
||||
conditional_variables=LabelTensor(torch.ones(size=(90, 1)), ['alpha']),
|
||||
conditional_variables=LabelTensor(torch.ones(size=(90, 1)),
|
||||
['alpha']),
|
||||
)
|
||||
}
|
||||
|
||||
@@ -113,32 +128,49 @@ def test_data_module():
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
assert isinstance(loader, PinaDataLoader)
|
||||
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False)
|
||||
data_module = PinaDataModule(poisson,
|
||||
device='cpu',
|
||||
batch_size=10,
|
||||
shuffle=False)
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
assert len(loader) == 24
|
||||
for i in loader:
|
||||
assert len(i) <= 10
|
||||
len_ref = sum([math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets])
|
||||
len_real = sum([len(dataset) for dataset in data_module.splits['train'].values()])
|
||||
len_ref = sum(
|
||||
[math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets])
|
||||
len_real = sum(
|
||||
[len(dataset) for dataset in data_module.splits['train'].values()])
|
||||
assert len_ref == len_real
|
||||
|
||||
supervised_dataset = SupervisedDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[supervised_dataset])
|
||||
data_module = PinaDataModule(poisson,
|
||||
device='cpu',
|
||||
batch_size=10,
|
||||
shuffle=False,
|
||||
datasets=[supervised_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
physics_dataset = SamplePointDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[physics_dataset])
|
||||
data_module = PinaDataModule(poisson,
|
||||
device='cpu',
|
||||
batch_size=10,
|
||||
shuffle=False,
|
||||
datasets=[physics_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
assert len(batch) <= 10
|
||||
|
||||
unsupervised_dataset = UnsupervisedDataset(poisson, device='cpu')
|
||||
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[unsupervised_dataset])
|
||||
data_module = PinaDataModule(poisson,
|
||||
device='cpu',
|
||||
batch_size=10,
|
||||
shuffle=False,
|
||||
datasets=[unsupervised_dataset])
|
||||
data_module.setup()
|
||||
loader = data_module.train_dataloader()
|
||||
for batch in loader:
|
||||
@@ -159,4 +191,6 @@ def test_loader():
|
||||
assert i.supervised.input_points.requires_grad == True
|
||||
assert i.physics.input_points.requires_grad == True
|
||||
assert i.unsupervised.input_points.requires_grad == True
|
||||
test_loader()
|
||||
|
||||
|
||||
test_loader()
|
||||
|
||||
Reference in New Issue
Block a user