Correct codacy warnings
This commit is contained in:
committed by
Nicola Demo
parent
c9304fb9bb
commit
1bc1b3a580
@@ -27,42 +27,42 @@ class Poisson(SpatialProblem):
|
||||
|
||||
conditions = {
|
||||
'gamma1':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 1
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 1
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 0
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': 0
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 1,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 1,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 0,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': 0,
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D':
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=my_laplace),
|
||||
Condition(domain=CartesianDomain({
|
||||
'x': [0, 1],
|
||||
'y': [0, 1]
|
||||
}),
|
||||
equation=my_laplace),
|
||||
'data':
|
||||
Condition(input_points=in_, output_points=out_)
|
||||
Condition(input_points=in_, output_points=out_)
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi ** 2)
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
@@ -79,7 +79,7 @@ def test_discretise_domain():
|
||||
assert poisson_problem.input_pts[b].shape[0] == n
|
||||
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
|
||||
assert poisson_problem.input_pts['D'].shape[0] == n ** 2
|
||||
assert poisson_problem.input_pts['D'].shape[0] == n**2
|
||||
poisson_problem.discretise_domain(n, 'random', locations=['D'])
|
||||
assert poisson_problem.input_pts['D'].shape[0] == n
|
||||
|
||||
@@ -91,6 +91,7 @@ def test_discretise_domain():
|
||||
|
||||
poisson_problem.discretise_domain(n)
|
||||
|
||||
|
||||
def test_sampling_few_variables():
|
||||
n = 10
|
||||
poisson_problem = Poisson()
|
||||
@@ -115,9 +116,8 @@ def test_variables_correct_order_sampling():
|
||||
variables=['y'])
|
||||
assert poisson_problem.input_pts['D'].labels == sorted(
|
||||
poisson_problem.input_variables)
|
||||
poisson_problem.discretise_domain(n,
|
||||
'grid',
|
||||
locations=['D'])
|
||||
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
|
||||
assert poisson_problem.input_pts['D'].labels == sorted(
|
||||
poisson_problem.input_variables)
|
||||
poisson_problem.discretise_domain(n,
|
||||
@@ -131,6 +131,7 @@ def test_variables_correct_order_sampling():
|
||||
assert poisson_problem.input_pts['D'].labels == sorted(
|
||||
poisson_problem.input_variables)
|
||||
|
||||
|
||||
def test_add_points():
|
||||
poisson_problem = Poisson()
|
||||
poisson_problem.discretise_domain(0,
|
||||
@@ -139,8 +140,10 @@ def test_add_points():
|
||||
variables=['x', 'y'])
|
||||
new_pts = LabelTensor(torch.tensor([[0.5, -0.5]]), labels=['x', 'y'])
|
||||
poisson_problem.add_points({'D': new_pts})
|
||||
assert torch.isclose(poisson_problem.input_pts['D'].extract('x'), new_pts.extract('x'))
|
||||
assert torch.isclose(poisson_problem.input_pts['D'].extract('y'), new_pts.extract('y'))
|
||||
assert torch.isclose(poisson_problem.input_pts['D'].extract('x'),
|
||||
new_pts.extract('x'))
|
||||
assert torch.isclose(poisson_problem.input_pts['D'].extract('y'),
|
||||
new_pts.extract('y'))
|
||||
|
||||
|
||||
def test_collector():
|
||||
|
||||
Reference in New Issue
Block a user