Correct codacy warnings

This commit is contained in:
FilippoOlivo
2024-10-22 14:26:39 +02:00
committed by Nicola Demo
parent c9304fb9bb
commit 1bc1b3a580
15 changed files with 252 additions and 210 deletions

View File

@@ -1,12 +1,6 @@
__all__ = [ __all__ = [
"PINN", "PINN", "Trainer", "LabelTensor", "Plotter", "Condition",
"Trainer", "SamplePointDataset", "PinaDataModule", "PinaDataLoader"
"LabelTensor",
"Plotter",
"Condition",
"SamplePointDataset",
"PinaDataModule",
"PinaDataLoader"
] ]
from .meta import * from .meta import *

View File

@@ -2,13 +2,8 @@
Import data classes Import data classes
""" """
__all__ = [ __all__ = [
'PinaDataLoader', 'PinaDataLoader', 'SupervisedDataset', 'SamplePointDataset',
'SupervisedDataset', 'UnsupervisedDataset', 'Batch', 'PinaDataModule', 'BaseDataset'
'SamplePointDataset',
'UnsupervisedDataset',
'Batch',
'PinaDataModule',
'BaseDataset'
] ]
from .pina_dataloader import PinaDataLoader from .pina_dataloader import PinaDataLoader

View File

@@ -22,10 +22,12 @@ class BaseDataset(Dataset):
dataset will be loaded. dataset will be loaded.
""" """
if cls is BaseDataset: if cls is BaseDataset:
raise TypeError('BaseDataset cannot be instantiated directly. Use a subclass.') raise TypeError(
'BaseDataset cannot be instantiated directly. Use a subclass.')
if not hasattr(cls, '__slots__'): if not hasattr(cls, '__slots__'):
raise TypeError('Something is wrong, __slots__ must be defined in subclasses.') raise TypeError(
return super().__new__(cls) 'Something is wrong, __slots__ must be defined in subclasses.')
return super(BaseDataset, cls).__new__(cls)
def __init__(self, problem, device): def __init__(self, problem, device):
"""" """"
@@ -79,7 +81,8 @@ class BaseDataset(Dataset):
def __getattribute__(self, item): def __getattribute__(self, item):
attribute = super().__getattribute__(item) attribute = super().__getattribute__(item)
if isinstance(attribute, LabelTensor) and attribute.dtype == torch.float32: if isinstance(attribute,
LabelTensor) and attribute.dtype == torch.float32:
attribute = attribute.to(device=self.device).requires_grad_() attribute = attribute.to(device=self.device).requires_grad_()
return attribute return attribute
@@ -101,7 +104,8 @@ class BaseDataset(Dataset):
if all(isinstance(x, int) for x in idx): if all(isinstance(x, int) for x in idx):
to_return_list = [] to_return_list = []
for i in self.__slots__: for i in self.__slots__:
to_return_list.append(getattr(self, i)[[idx]].to(self.device)) to_return_list.append(
getattr(self, i)[[idx]].to(self.device))
return to_return_list return to_return_list
raise ValueError(f'Invalid index {idx}') raise ValueError(f'Invalid index {idx}')

View File

@@ -5,6 +5,7 @@ from .pina_subset import PinaSubset
class Batch: class Batch:
def __init__(self, dataset_dict, idx_dict): def __init__(self, dataset_dict, idx_dict):
for k, v in dataset_dict.items(): for k, v in dataset_dict.items():
@@ -29,5 +30,6 @@ class Batch:
def __getattr__(self, item): def __getattr__(self, item):
if not item in dir(self): if not item in dir(self):
raise AttributeError(f'Batch instance has no attribute {item}') raise AttributeError(f'Batch instance has no attribute {item}')
return PinaSubset(getattr(self, item).dataset, return PinaSubset(
getattr(self, item).dataset,
getattr(self, item).indices[self.coordinates_dict[item]]) getattr(self, item).indices[self.coordinates_dict[item]])

View File

@@ -50,7 +50,8 @@ class PinaDataLoader:
temp_dict[k] = slice(i * v, (i + 1) * v) temp_dict[k] = slice(i * v, (i + 1) * v)
else: else:
temp_dict[k] = slice(i * v, len(self.dataset_dict[k])) temp_dict[k] = slice(i * v, len(self.dataset_dict[k]))
self.batches.append(Batch(idx_dict=temp_dict, dataset_dict=self.dataset_dict)) self.batches.append(
Batch(idx_dict=temp_dict, dataset_dict=self.dataset_dict))
def __iter__(self): def __iter__(self):
""" """

View File

@@ -5,6 +5,7 @@ import torch
from ..utils import check_consistency from ..utils import check_consistency
from .optimizer_interface import Optimizer from .optimizer_interface import Optimizer
class TorchOptimizer(Optimizer): class TorchOptimizer(Optimizer):
def __init__(self, optimizer_class, **kwargs): def __init__(self, optimizer_class, **kwargs):
@@ -14,6 +15,5 @@ class TorchOptimizer(Optimizer):
self.kwargs = kwargs self.kwargs = kwargs
def hook(self, parameters): def hook(self, parameters):
self.optimizer_instance = self.optimizer_class( self.optimizer_instance = self.optimizer_class(parameters,
parameters, **self.kwargs **self.kwargs)
)

View File

@@ -5,13 +5,13 @@ try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0 from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError: except ImportError:
from torch.optim.lr_scheduler import ( from torch.optim.lr_scheduler import (
_LRScheduler as LRScheduler, _LRScheduler as LRScheduler, ) # torch < 2.0
) # torch < 2.0
from ..utils import check_consistency from ..utils import check_consistency
from .optimizer_interface import Optimizer from .optimizer_interface import Optimizer
from .scheduler_interface import Scheduler from .scheduler_interface import Scheduler
class TorchScheduler(Scheduler): class TorchScheduler(Scheduler):
def __init__(self, scheduler_class, **kwargs): def __init__(self, scheduler_class, **kwargs):
@@ -23,5 +23,4 @@ class TorchScheduler(Scheduler):
def hook(self, optimizer): def hook(self, optimizer):
check_consistency(optimizer, Optimizer) check_consistency(optimizer, Optimizer)
self.scheduler_instance = self.scheduler_class( self.scheduler_instance = self.scheduler_class(
optimizer.optimizer_instance, **self.kwargs optimizer.optimizer_instance, **self.kwargs)
)

View File

@@ -17,15 +17,13 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
LightningModule methods. LightningModule methods.
""" """
def __init__( def __init__(self,
self,
models, models,
problem, problem,
optimizers, optimizers,
schedulers, schedulers,
extra_features, extra_features,
use_lt=True use_lt=True):
):
""" """
:param model: A torch neural network model instance. :param model: A torch neural network model instance.
:type model: torch.nn.Module :type model: torch.nn.Module
@@ -55,10 +53,11 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
if use_lt is True: if use_lt is True:
for idx in range(len(models)): for idx in range(len(models)):
models[idx] = Network( models[idx] = Network(
model = models[idx], model=models[idx],
input_variables=problem.input_variables, input_variables=problem.input_variables,
output_variables=problem.output_variables, output_variables=problem.output_variables,
extra_features=extra_features, ) extra_features=extra_features,
)
#Check scheduler consistency + encapsulation #Check scheduler consistency + encapsulation
if not isinstance(schedulers, list): if not isinstance(schedulers, list):
@@ -79,11 +78,9 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
# check length consistency optimizers # check length consistency optimizers
if len_model != len_optimizer: if len_model != len_optimizer:
raise ValueError( raise ValueError("You must define one optimizer for each model."
"You must define one optimizer for each model."
f"Got {len_model} models, and {len_optimizer}" f"Got {len_model} models, and {len_optimizer}"
" optimizers." " optimizers.")
)
# extra features handling # extra features handling
@@ -92,7 +89,6 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
self._pina_schedulers = schedulers self._pina_schedulers = schedulers
self._pina_problem = problem self._pina_problem = problem
@abstractmethod @abstractmethod
def forward(self, *args, **kwargs): def forward(self, *args, **kwargs):
pass pass
@@ -142,5 +138,8 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
TODO TODO
""" """
for _, condition in problem.conditions.items(): for _, condition in problem.conditions.items():
if not set(self.accepted_condition_types).issubset(condition.condition_type): if not set(self.accepted_condition_types).issubset(
raise ValueError(f'{self.__name__} support only dose not support condition {condition.condition_type}') condition.condition_type):
raise ValueError(
f'{self.__name__} support only dose not support condition {condition.condition_type}'
)

View File

@@ -40,15 +40,13 @@ class SupervisedSolver(SolverInterface):
accepted_condition_types = ['supervised'] accepted_condition_types = ['supervised']
__name__ = 'SupervisedSolver' __name__ = 'SupervisedSolver'
def __init__( def __init__(self,
self,
problem, problem,
model, model,
loss=None, loss=None,
optimizer=None, optimizer=None,
scheduler=None, scheduler=None,
extra_features=None extra_features=None):
):
""" """
:param AbstractProblem problem: The formualation of the problem. :param AbstractProblem problem: The formualation of the problem.
:param torch.nn.Module model: The neural network model to use. :param torch.nn.Module model: The neural network model to use.
@@ -68,16 +66,13 @@ class SupervisedSolver(SolverInterface):
optimizer = TorchOptimizer(torch.optim.Adam, lr=0.001) optimizer = TorchOptimizer(torch.optim.Adam, lr=0.001)
if scheduler is None: if scheduler is None:
scheduler = TorchScheduler( scheduler = TorchScheduler(torch.optim.lr_scheduler.ConstantLR)
torch.optim.lr_scheduler.ConstantLR)
super().__init__( super().__init__(models=model,
models=model,
problem=problem, problem=problem,
optimizers=optimizer, optimizers=optimizer,
schedulers=scheduler, schedulers=scheduler,
extra_features=extra_features extra_features=extra_features)
)
# check consistency # check consistency
check_consistency(loss, (LossInterface, _Loss), subclass=False) check_consistency(loss, (LossInterface, _Loss), subclass=False)
@@ -107,10 +102,8 @@ class SupervisedSolver(SolverInterface):
""" """
self._optimizer.hook(self._model.parameters()) self._optimizer.hook(self._model.parameters())
self._scheduler.hook(self._optimizer) self._scheduler.hook(self._optimizer)
return ( return ([self._optimizer.optimizer_instance],
[self._optimizer.optimizer_instance], [self._scheduler.scheduler_instance])
[self._scheduler.scheduler_instance]
)
def training_step(self, batch, batch_idx): def training_step(self, batch, batch_idx):
"""Solver training step. """Solver training step.
@@ -136,8 +129,7 @@ class SupervisedSolver(SolverInterface):
# for data driven mode # for data driven mode
if not hasattr(condition, "output_points"): if not hasattr(condition, "output_points"):
raise NotImplementedError( raise NotImplementedError(
f"{type(self).__name__} works only in data-driven mode." f"{type(self).__name__} works only in data-driven mode.")
)
output_pts = out[condition_idx == condition_id] output_pts = out[condition_idx == condition_id]
input_pts = pts[condition_idx == condition_id] input_pts = pts[condition_idx == condition_id]
@@ -145,9 +137,7 @@ class SupervisedSolver(SolverInterface):
input_pts.labels = pts.labels input_pts.labels = pts.labels
output_pts.labels = out.labels output_pts.labels = out.labels
loss = ( loss = (self.loss_data(input_pts=input_pts, output_pts=output_pts))
self.loss_data(input_pts=input_pts, output_pts=output_pts)
)
loss = loss.as_subclass(torch.Tensor) loss = loss.as_subclass(torch.Tensor)
self.log("mean_loss", float(loss), prog_bar=True, logger=True) self.log("mean_loss", float(loss), prog_bar=True, logger=True)

View File

@@ -29,34 +29,49 @@ class Poisson(SpatialProblem):
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = { conditions = {
'gamma1': Condition( 'gamma1':
domain=CartesianDomain({'x': [0, 1], 'y': 1}), Condition(domain=CartesianDomain({
'x': [0, 1],
'y': 1
}),
equation=FixedValue(0.0)), equation=FixedValue(0.0)),
'gamma2': Condition( 'gamma2':
domain=CartesianDomain({'x': [0, 1], 'y': 0}), Condition(domain=CartesianDomain({
'x': [0, 1],
'y': 0
}),
equation=FixedValue(0.0)), equation=FixedValue(0.0)),
'gamma3': Condition( 'gamma3':
domain=CartesianDomain({'x': 1, 'y': [0, 1]}), Condition(domain=CartesianDomain({
'x': 1,
'y': [0, 1]
}),
equation=FixedValue(0.0)), equation=FixedValue(0.0)),
'gamma4': Condition( 'gamma4':
domain=CartesianDomain({'x': 0, 'y': [0, 1]}), Condition(domain=CartesianDomain({
'x': 0,
'y': [0, 1]
}),
equation=FixedValue(0.0)), equation=FixedValue(0.0)),
'D': Condition( 'D':
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']), Condition(input_points=LabelTensor(torch.rand(size=(100, 2)),
['x', 'y']),
equation=my_laplace), equation=my_laplace),
'data': Condition( 'data':
input_points=in_, Condition(input_points=in_, output_points=out_),
output_points=out_), 'data2':
'data2': Condition( Condition(input_points=in2_, output_points=out2_),
input_points=in2_, 'unsupervised':
output_points=out2_), Condition(
'unsupervised': Condition(
input_points=LabelTensor(torch.rand(size=(45, 2)), ['x', 'y']), input_points=LabelTensor(torch.rand(size=(45, 2)), ['x', 'y']),
conditional_variables=LabelTensor(torch.ones(size=(45, 1)), ['alpha']), conditional_variables=LabelTensor(torch.ones(size=(45, 1)),
['alpha']),
), ),
'unsupervised2': Condition( 'unsupervised2':
Condition(
input_points=LabelTensor(torch.rand(size=(90, 2)), ['x', 'y']), input_points=LabelTensor(torch.rand(size=(90, 2)), ['x', 'y']),
conditional_variables=LabelTensor(torch.ones(size=(90, 1)), ['alpha']), conditional_variables=LabelTensor(torch.ones(size=(90, 1)),
['alpha']),
) )
} }
@@ -113,32 +128,49 @@ def test_data_module():
assert isinstance(loader, PinaDataLoader) assert isinstance(loader, PinaDataLoader)
assert isinstance(loader, PinaDataLoader) assert isinstance(loader, PinaDataLoader)
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False) data_module = PinaDataModule(poisson,
device='cpu',
batch_size=10,
shuffle=False)
data_module.setup() data_module.setup()
loader = data_module.train_dataloader() loader = data_module.train_dataloader()
assert len(loader) == 24 assert len(loader) == 24
for i in loader: for i in loader:
assert len(i) <= 10 assert len(i) <= 10
len_ref = sum([math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets]) len_ref = sum(
len_real = sum([len(dataset) for dataset in data_module.splits['train'].values()]) [math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets])
len_real = sum(
[len(dataset) for dataset in data_module.splits['train'].values()])
assert len_ref == len_real assert len_ref == len_real
supervised_dataset = SupervisedDataset(poisson, device='cpu') supervised_dataset = SupervisedDataset(poisson, device='cpu')
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[supervised_dataset]) data_module = PinaDataModule(poisson,
device='cpu',
batch_size=10,
shuffle=False,
datasets=[supervised_dataset])
data_module.setup() data_module.setup()
loader = data_module.train_dataloader() loader = data_module.train_dataloader()
for batch in loader: for batch in loader:
assert len(batch) <= 10 assert len(batch) <= 10
physics_dataset = SamplePointDataset(poisson, device='cpu') physics_dataset = SamplePointDataset(poisson, device='cpu')
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[physics_dataset]) data_module = PinaDataModule(poisson,
device='cpu',
batch_size=10,
shuffle=False,
datasets=[physics_dataset])
data_module.setup() data_module.setup()
loader = data_module.train_dataloader() loader = data_module.train_dataloader()
for batch in loader: for batch in loader:
assert len(batch) <= 10 assert len(batch) <= 10
unsupervised_dataset = UnsupervisedDataset(poisson, device='cpu') unsupervised_dataset = UnsupervisedDataset(poisson, device='cpu')
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[unsupervised_dataset]) data_module = PinaDataModule(poisson,
device='cpu',
batch_size=10,
shuffle=False,
datasets=[unsupervised_dataset])
data_module.setup() data_module.setup()
loader = data_module.train_dataloader() loader = data_module.train_dataloader()
for batch in loader: for batch in loader:
@@ -159,4 +191,6 @@ def test_loader():
assert i.supervised.input_points.requires_grad == True assert i.supervised.input_points.requires_grad == True
assert i.physics.input_points.requires_grad == True assert i.physics.input_points.requires_grad == True
assert i.unsupervised.input_points.requires_grad == True assert i.unsupervised.input_points.requires_grad == True
test_loader() test_loader()

View File

@@ -4,29 +4,23 @@ import pytest
from pina.label_tensor import LabelTensor from pina.label_tensor import LabelTensor
data = torch.rand((20, 3)) data = torch.rand((20, 3))
labels_column = { labels_column = {1: {"name": "space", "dof": ['x', 'y', 'z']}}
1: { labels_row = {0: {"name": "samples", "dof": range(20)}}
"name": "space",
"dof": ['x', 'y', 'z']
}
}
labels_row = {
0: {
"name": "samples",
"dof": range(20)
}
}
labels_list = ['x', 'y', 'z'] labels_list = ['x', 'y', 'z']
labels_all = labels_column | labels_row labels_all = labels_column | labels_row
@pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all, labels_list])
@pytest.mark.parametrize("labels",
[labels_column, labels_row, labels_all, labels_list])
def test_constructor(labels): def test_constructor(labels):
print(LabelTensor(data, labels)) print(LabelTensor(data, labels))
def test_wrong_constructor(): def test_wrong_constructor():
with pytest.raises(ValueError): with pytest.raises(ValueError):
LabelTensor(data, ['a', 'b']) LabelTensor(data, ['a', 'b'])
@pytest.mark.parametrize("labels", [labels_column, labels_all]) @pytest.mark.parametrize("labels", [labels_column, labels_all])
@pytest.mark.parametrize("labels_te", ['z', ['z'], {'space': ['z']}]) @pytest.mark.parametrize("labels_te", ['z', ['z'], {'space': ['z']}])
def test_extract_column(labels, labels_te): def test_extract_column(labels, labels_te):
@@ -37,6 +31,7 @@ def test_extract_column(labels, labels_te):
assert new.shape[0] == 20 assert new.shape[0] == 20
assert torch.all(torch.isclose(data[:, 2].reshape(-1, 1), new)) assert torch.all(torch.isclose(data[:, 2].reshape(-1, 1), new))
@pytest.mark.parametrize("labels", [labels_row, labels_all]) @pytest.mark.parametrize("labels", [labels_row, labels_all])
@pytest.mark.parametrize("labels_te", [{'samples': [2]}]) @pytest.mark.parametrize("labels_te", [{'samples': [2]}])
def test_extract_row(labels, labels_te): def test_extract_row(labels, labels_te):
@@ -47,10 +42,14 @@ def test_extract_row(labels, labels_te):
assert new.shape[0] == 1 assert new.shape[0] == 1
assert torch.all(torch.isclose(data[2].reshape(1, -1), new)) assert torch.all(torch.isclose(data[2].reshape(1, -1), new))
@pytest.mark.parametrize("labels_te", [
{'samples': [2], 'space': ['z']}, @pytest.mark.parametrize("labels_te", [{
{'space': 'z', 'samples': 2} 'samples': [2],
]) 'space': ['z']
}, {
'space': 'z',
'samples': 2
}])
def test_extract_2D(labels_te): def test_extract_2D(labels_te):
labels = labels_all labels = labels_all
tensor = LabelTensor(data, labels) tensor = LabelTensor(data, labels)
@@ -58,7 +57,8 @@ def test_extract_2D(labels_te):
assert new.ndim == tensor.ndim assert new.ndim == tensor.ndim
assert new.shape[1] == 1 assert new.shape[1] == 1
assert new.shape[0] == 1 assert new.shape[0] == 1
assert torch.all(torch.isclose(data[2,2].reshape(1, 1), new)) assert torch.all(torch.isclose(data[2, 2].reshape(1, 1), new))
def test_extract_3D(): def test_extract_3D():
data = torch.rand(20, 3, 4) data = torch.rand(20, 3, 4)
@@ -72,10 +72,7 @@ def test_extract_3D():
"dof": range(4) "dof": range(4)
}, },
} }
labels_te = { labels_te = {'space': ['x', 'z'], 'time': range(1, 4)}
'space': ['x', 'z'],
'time': range(1, 4)
}
tensor = LabelTensor(data, labels) tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te) new = tensor.extract(labels_te)
@@ -84,15 +81,13 @@ def test_extract_3D():
assert new.shape[0] == 20 assert new.shape[0] == 20
assert new.shape[1] == 2 assert new.shape[1] == 2
assert new.shape[2] == 3 assert new.shape[2] == 3
assert torch.all(torch.isclose( assert torch.all(torch.isclose(data[:, 0::2, 1:4].reshape(20, 2, 3), new))
data[:, 0::2, 1:4].reshape(20, 2, 3),
new
))
assert tensor2.ndim == tensor.ndim assert tensor2.ndim == tensor.ndim
assert tensor2.shape == tensor.shape assert tensor2.shape == tensor.shape
assert tensor.full_labels == tensor2.full_labels assert tensor.full_labels == tensor2.full_labels
assert new.shape != tensor.shape assert new.shape != tensor.shape
def test_concatenation_3D(): def test_concatenation_3D():
data_1 = torch.rand(20, 3, 4) data_1 = torch.rand(20, 3, 4)
labels_1 = ['x', 'y', 'z', 'w'] labels_1 = ['x', 'y', 'z', 'w']
@@ -152,27 +147,28 @@ def test_concatenation_3D():
def test_summation(): def test_summation():
lt1 = LabelTensor(torch.ones(20,3), labels_all) lt1 = LabelTensor(torch.ones(20, 3), labels_all)
lt2 = LabelTensor(torch.ones(30,3), ['x', 'y', 'z']) lt2 = LabelTensor(torch.ones(30, 3), ['x', 'y', 'z'])
with pytest.raises(RuntimeError): with pytest.raises(RuntimeError):
LabelTensor.summation([lt1, lt2]) LabelTensor.summation([lt1, lt2])
lt1 = LabelTensor(torch.ones(20,3), labels_all) lt1 = LabelTensor(torch.ones(20, 3), labels_all)
lt2 = LabelTensor(torch.ones(20,3), labels_all) lt2 = LabelTensor(torch.ones(20, 3), labels_all)
lt_sum = LabelTensor.summation([lt1, lt2]) lt_sum = LabelTensor.summation([lt1, lt2])
assert lt_sum.ndim == lt_sum.ndim assert lt_sum.ndim == lt_sum.ndim
assert lt_sum.shape[0] == 20 assert lt_sum.shape[0] == 20
assert lt_sum.shape[1] == 3 assert lt_sum.shape[1] == 3
assert lt_sum.full_labels == labels_all assert lt_sum.full_labels == labels_all
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all() assert torch.eq(lt_sum.tensor, torch.ones(20, 3) * 2).all()
lt1 = LabelTensor(torch.ones(20,3), labels_all) lt1 = LabelTensor(torch.ones(20, 3), labels_all)
lt2 = LabelTensor(torch.ones(20,3), labels_all) lt2 = LabelTensor(torch.ones(20, 3), labels_all)
lt3 = LabelTensor(torch.zeros(20, 3), labels_all) lt3 = LabelTensor(torch.zeros(20, 3), labels_all)
lt_sum = LabelTensor.summation([lt1, lt2, lt3]) lt_sum = LabelTensor.summation([lt1, lt2, lt3])
assert lt_sum.ndim == lt_sum.ndim assert lt_sum.ndim == lt_sum.ndim
assert lt_sum.shape[0] == 20 assert lt_sum.shape[0] == 20
assert lt_sum.shape[1] == 3 assert lt_sum.shape[1] == 3
assert lt_sum.full_labels == labels_all assert lt_sum.full_labels == labels_all
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all() assert torch.eq(lt_sum.tensor, torch.ones(20, 3) * 2).all()
def test_append_3D(): def test_append_3D():
data_1 = torch.rand(20, 3, 2) data_1 = torch.rand(20, 3, 2)
@@ -187,6 +183,7 @@ def test_append_3D():
assert lt1.full_labels[1]['dof'] == range(3) assert lt1.full_labels[1]['dof'] == range(3)
assert lt1.full_labels[2]['dof'] == ['x', 'y', 'z', 'w'] assert lt1.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
def test_append_2D(): def test_append_2D():
data_1 = torch.rand(20, 2) data_1 = torch.rand(20, 2)
labels_1 = ['x', 'y'] labels_1 = ['x', 'y']
@@ -199,12 +196,31 @@ def test_append_2D():
assert lt1.full_labels[0]['dof'] == range(400) assert lt1.full_labels[0]['dof'] == range(400)
assert lt1.full_labels[1]['dof'] == ['x', 'y', 'z', 'w'] assert lt1.full_labels[1]['dof'] == ['x', 'y', 'z', 'w']
def test_vstack_3D(): def test_vstack_3D():
data_1 = torch.rand(20, 3, 2) data_1 = torch.rand(20, 3, 2)
labels_1 = {1:{'dof': ['a', 'b', 'c'], 'name': 'first'}, 2: {'dof': ['x', 'y'], 'name': 'second'}} labels_1 = {
1: {
'dof': ['a', 'b', 'c'],
'name': 'first'
},
2: {
'dof': ['x', 'y'],
'name': 'second'
}
}
lt1 = LabelTensor(data_1, labels_1) lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 2) data_2 = torch.rand(20, 3, 2)
labels_1 = {1:{'dof': ['a', 'b', 'c'], 'name': 'first'}, 2: {'dof': ['x', 'y'], 'name': 'second'}} labels_1 = {
1: {
'dof': ['a', 'b', 'c'],
'name': 'first'
},
2: {
'dof': ['x', 'y'],
'name': 'second'
}
}
lt2 = LabelTensor(data_2, labels_1) lt2 = LabelTensor(data_2, labels_1)
lt_stacked = LabelTensor.vstack([lt1, lt2]) lt_stacked = LabelTensor.vstack([lt1, lt2])
assert lt_stacked.shape == (40, 3, 2) assert lt_stacked.shape == (40, 3, 2)
@@ -214,12 +230,13 @@ def test_vstack_3D():
assert lt_stacked.full_labels[1]['name'] == 'first' assert lt_stacked.full_labels[1]['name'] == 'first'
assert lt_stacked.full_labels[2]['name'] == 'second' assert lt_stacked.full_labels[2]['name'] == 'second'
def test_vstack_2D(): def test_vstack_2D():
data_1 = torch.rand(20, 2) data_1 = torch.rand(20, 2)
labels_1 = { 1: {'dof': ['x', 'y'], 'name': 'second'}} labels_1 = {1: {'dof': ['x', 'y'], 'name': 'second'}}
lt1 = LabelTensor(data_1, labels_1) lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 2) data_2 = torch.rand(20, 2)
labels_1 = { 1: {'dof': ['x', 'y'], 'name': 'second'}} labels_1 = {1: {'dof': ['x', 'y'], 'name': 'second'}}
lt2 = LabelTensor(data_2, labels_1) lt2 = LabelTensor(data_2, labels_1)
lt_stacked = LabelTensor.vstack([lt1, lt2]) lt_stacked = LabelTensor.vstack([lt1, lt2])
assert lt_stacked.shape == (40, 2) assert lt_stacked.shape == (40, 2)
@@ -228,35 +245,36 @@ def test_vstack_2D():
assert lt_stacked.full_labels[0]['name'] == 0 assert lt_stacked.full_labels[0]['name'] == 0
assert lt_stacked.full_labels[1]['name'] == 'second' assert lt_stacked.full_labels[1]['name'] == 'second'
def test_sorting(): def test_sorting():
data = torch.ones(20, 5) data = torch.ones(20, 5)
data[:,0] = data[:,0]*4 data[:, 0] = data[:, 0] * 4
data[:,1] = data[:,1]*2 data[:, 1] = data[:, 1] * 2
data[:,2] = data[:,2] data[:, 2] = data[:, 2]
data[:,3] = data[:,3]*5 data[:, 3] = data[:, 3] * 5
data[:,4] = data[:,4]*3 data[:, 4] = data[:, 4] * 3
labels = ['d', 'b', 'a', 'e', 'c'] labels = ['d', 'b', 'a', 'e', 'c']
lt_data = LabelTensor(data, labels) lt_data = LabelTensor(data, labels)
lt_sorted = LabelTensor.sort_labels(lt_data) lt_sorted = LabelTensor.sort_labels(lt_data)
assert lt_sorted.shape == (20,5) assert lt_sorted.shape == (20, 5)
assert lt_sorted.labels == ['a', 'b', 'c', 'd', 'e'] assert lt_sorted.labels == ['a', 'b', 'c', 'd', 'e']
assert torch.eq(lt_sorted.tensor[:,0], torch.ones(20) * 1).all() assert torch.eq(lt_sorted.tensor[:, 0], torch.ones(20) * 1).all()
assert torch.eq(lt_sorted.tensor[:,1], torch.ones(20) * 2).all() assert torch.eq(lt_sorted.tensor[:, 1], torch.ones(20) * 2).all()
assert torch.eq(lt_sorted.tensor[:,2], torch.ones(20) * 3).all() assert torch.eq(lt_sorted.tensor[:, 2], torch.ones(20) * 3).all()
assert torch.eq(lt_sorted.tensor[:,3], torch.ones(20) * 4).all() assert torch.eq(lt_sorted.tensor[:, 3], torch.ones(20) * 4).all()
assert torch.eq(lt_sorted.tensor[:,4], torch.ones(20) * 5).all() assert torch.eq(lt_sorted.tensor[:, 4], torch.ones(20) * 5).all()
data = torch.ones(20, 4, 5) data = torch.ones(20, 4, 5)
data[:,0,:] = data[:,0]*4 data[:, 0, :] = data[:, 0] * 4
data[:,1,:] = data[:,1]*2 data[:, 1, :] = data[:, 1] * 2
data[:,2,:] = data[:,2] data[:, 2, :] = data[:, 2]
data[:,3,:] = data[:,3]*3 data[:, 3, :] = data[:, 3] * 3
labels = {1: {'dof': ['d', 'b', 'a', 'c'], 'name': 1}} labels = {1: {'dof': ['d', 'b', 'a', 'c'], 'name': 1}}
lt_data = LabelTensor(data, labels) lt_data = LabelTensor(data, labels)
lt_sorted = LabelTensor.sort_labels(lt_data, dim=1) lt_sorted = LabelTensor.sort_labels(lt_data, dim=1)
assert lt_sorted.shape == (20,4, 5) assert lt_sorted.shape == (20, 4, 5)
assert lt_sorted.full_labels[1]['dof'] == ['a', 'b', 'c', 'd'] assert lt_sorted.full_labels[1]['dof'] == ['a', 'b', 'c', 'd']
assert torch.eq(lt_sorted.tensor[:,0,:], torch.ones(20,5) * 1).all() assert torch.eq(lt_sorted.tensor[:, 0, :], torch.ones(20, 5) * 1).all()
assert torch.eq(lt_sorted.tensor[:,1,:], torch.ones(20,5) * 2).all() assert torch.eq(lt_sorted.tensor[:, 1, :], torch.ones(20, 5) * 2).all()
assert torch.eq(lt_sorted.tensor[:,2,:], torch.ones(20,5) * 3).all() assert torch.eq(lt_sorted.tensor[:, 2, :], torch.ones(20, 5) * 3).all()
assert torch.eq(lt_sorted.tensor[:,3,:], torch.ones(20,5) * 4).all() assert torch.eq(lt_sorted.tensor[:, 3, :], torch.ones(20, 5) * 4).all()

View File

@@ -54,8 +54,7 @@ def test_extract_order():
label_to_extract = ['c', 'a'] label_to_extract = ['c', 'a']
tensor = LabelTensor(data, labels) tensor = LabelTensor(data, labels)
new = tensor.extract(label_to_extract) new = tensor.extract(label_to_extract)
expected = torch.cat( expected = torch.cat((data[:, 2].reshape(-1, 1), data[:, 0].reshape(-1, 1)),
(data[:, 2].reshape(-1, 1), data[:, 0].reshape(-1, 1)),
dim=1) dim=1)
assert new.labels == label_to_extract assert new.labels == label_to_extract
assert new.shape[1] == len(label_to_extract) assert new.shape[1] == len(label_to_extract)
@@ -91,6 +90,7 @@ def test_getitem():
assert tensor_view.labels == ['a', 'c'] assert tensor_view.labels == ['a', 'c']
assert torch.allclose(tensor_view, data[:, 0::2]) assert torch.allclose(tensor_view, data[:, 0::2])
def test_getitem2(): def test_getitem2():
tensor = LabelTensor(data, labels) tensor = LabelTensor(data, labels)
tensor_view = tensor[:5] tensor_view = tensor[:5]
@@ -101,6 +101,7 @@ def test_getitem2():
tensor_view = tensor[idx] tensor_view = tensor[idx]
assert tensor_view.labels == labels assert tensor_view.labels == labels
def test_slice(): def test_slice():
tensor = LabelTensor(data, labels) tensor = LabelTensor(data, labels)
tensor_view = tensor[:5, :2] tensor_view = tensor[:5, :2]

View File

@@ -39,6 +39,7 @@ def test_grad_scalar_output():
] ]
assert torch.allclose(grad_tensor_s, true_val) assert torch.allclose(grad_tensor_s, true_val)
def test_grad_vector_output(): def test_grad_vector_output():
grad_tensor_v = grad(tensor_v, inp) grad_tensor_v = grad(tensor_v, inp)
true_val = torch.cat( true_val = torch.cat(
@@ -75,6 +76,7 @@ def test_grad_vector_output():
] ]
assert torch.allclose(grad_tensor_v, true_val) assert torch.allclose(grad_tensor_v, true_val)
def test_div_vector_output(): def test_div_vector_output():
div_tensor_v = div(tensor_v, inp) div_tensor_v = div(tensor_v, inp)
true_val = 2*torch.sum(inp, dim=1).reshape(-1,1) true_val = 2*torch.sum(inp, dim=1).reshape(-1,1)
@@ -88,6 +90,7 @@ def test_div_vector_output():
assert div_tensor_v.labels == [f'dadx+dbdy'] assert div_tensor_v.labels == [f'dadx+dbdy']
assert torch.allclose(div_tensor_v, true_val) assert torch.allclose(div_tensor_v, true_val)
def test_laplacian_scalar_output(): def test_laplacian_scalar_output():
laplace_tensor_s = laplacian(tensor_s, inp) laplace_tensor_s = laplacian(tensor_s, inp)
true_val = 6*torch.ones_like(laplace_tensor_s) true_val = 6*torch.ones_like(laplace_tensor_s)
@@ -101,6 +104,7 @@ def test_laplacian_scalar_output():
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"] assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
assert torch.allclose(laplace_tensor_s, true_val) assert torch.allclose(laplace_tensor_s, true_val)
def test_laplacian_vector_output(): def test_laplacian_vector_output():
laplace_tensor_v = laplacian(tensor_v, inp) laplace_tensor_v = laplacian(tensor_v, inp)
true_val = 2*torch.ones_like(tensor_v) true_val = 2*torch.ones_like(tensor_v)

View File

@@ -1,19 +1,17 @@
import torch import torch
import pytest import pytest
from pina import TorchOptimizer from pina import TorchOptimizer
opt_list = [ opt_list = [
torch.optim.Adam, torch.optim.Adam, torch.optim.AdamW, torch.optim.SGD, torch.optim.RMSprop
torch.optim.AdamW,
torch.optim.SGD,
torch.optim.RMSprop
] ]
@pytest.mark.parametrize("optimizer_class", opt_list) @pytest.mark.parametrize("optimizer_class", opt_list)
def test_constructor(optimizer_class): def test_constructor(optimizer_class):
TorchOptimizer(optimizer_class, lr=1e-3) TorchOptimizer(optimizer_class, lr=1e-3)
@pytest.mark.parametrize("optimizer_class", opt_list) @pytest.mark.parametrize("optimizer_class", opt_list)
def test_hook(optimizer_class): def test_hook(optimizer_class):
opt = TorchOptimizer(optimizer_class, lr=1e-3) opt = TorchOptimizer(optimizer_class, lr=1e-3)

View File

@@ -62,7 +62,7 @@ class Poisson(SpatialProblem):
def poisson_sol(self, pts): def poisson_sol(self, pts):
return -(torch.sin(pts.extract(['x']) * torch.pi) * return -(torch.sin(pts.extract(['x']) * torch.pi) *
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi ** 2) torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2)
truth_solution = poisson_sol truth_solution = poisson_sol
@@ -79,7 +79,7 @@ def test_discretise_domain():
assert poisson_problem.input_pts[b].shape[0] == n assert poisson_problem.input_pts[b].shape[0] == n
poisson_problem.discretise_domain(n, 'grid', locations=['D']) poisson_problem.discretise_domain(n, 'grid', locations=['D'])
assert poisson_problem.input_pts['D'].shape[0] == n ** 2 assert poisson_problem.input_pts['D'].shape[0] == n**2
poisson_problem.discretise_domain(n, 'random', locations=['D']) poisson_problem.discretise_domain(n, 'random', locations=['D'])
assert poisson_problem.input_pts['D'].shape[0] == n assert poisson_problem.input_pts['D'].shape[0] == n
@@ -91,6 +91,7 @@ def test_discretise_domain():
poisson_problem.discretise_domain(n) poisson_problem.discretise_domain(n)
def test_sampling_few_variables(): def test_sampling_few_variables():
n = 10 n = 10
poisson_problem = Poisson() poisson_problem = Poisson()
@@ -115,9 +116,8 @@ def test_variables_correct_order_sampling():
variables=['y']) variables=['y'])
assert poisson_problem.input_pts['D'].labels == sorted( assert poisson_problem.input_pts['D'].labels == sorted(
poisson_problem.input_variables) poisson_problem.input_variables)
poisson_problem.discretise_domain(n,
'grid', poisson_problem.discretise_domain(n, 'grid', locations=['D'])
locations=['D'])
assert poisson_problem.input_pts['D'].labels == sorted( assert poisson_problem.input_pts['D'].labels == sorted(
poisson_problem.input_variables) poisson_problem.input_variables)
poisson_problem.discretise_domain(n, poisson_problem.discretise_domain(n,
@@ -131,6 +131,7 @@ def test_variables_correct_order_sampling():
assert poisson_problem.input_pts['D'].labels == sorted( assert poisson_problem.input_pts['D'].labels == sorted(
poisson_problem.input_variables) poisson_problem.input_variables)
def test_add_points(): def test_add_points():
poisson_problem = Poisson() poisson_problem = Poisson()
poisson_problem.discretise_domain(0, poisson_problem.discretise_domain(0,
@@ -139,8 +140,10 @@ def test_add_points():
variables=['x', 'y']) variables=['x', 'y'])
new_pts = LabelTensor(torch.tensor([[0.5, -0.5]]), labels=['x', 'y']) new_pts = LabelTensor(torch.tensor([[0.5, -0.5]]), labels=['x', 'y'])
poisson_problem.add_points({'D': new_pts}) poisson_problem.add_points({'D': new_pts})
assert torch.isclose(poisson_problem.input_pts['D'].extract('x'), new_pts.extract('x')) assert torch.isclose(poisson_problem.input_pts['D'].extract('x'),
assert torch.isclose(poisson_problem.input_pts['D'].extract('y'), new_pts.extract('y')) new_pts.extract('x'))
assert torch.isclose(poisson_problem.input_pts['D'].extract('y'),
new_pts.extract('y'))
def test_collector(): def test_collector():