Correct codacy warnings

This commit is contained in:
FilippoOlivo
2024-10-22 14:26:39 +02:00
committed by Nicola Demo
parent c9304fb9bb
commit 1bc1b3a580
15 changed files with 252 additions and 210 deletions

View File

@@ -1,12 +1,6 @@
__all__ = [
"PINN",
"Trainer",
"LabelTensor",
"Plotter",
"Condition",
"SamplePointDataset",
"PinaDataModule",
"PinaDataLoader"
"PINN", "Trainer", "LabelTensor", "Plotter", "Condition",
"SamplePointDataset", "PinaDataModule", "PinaDataLoader"
]
from .meta import *

View File

@@ -2,13 +2,8 @@
Import data classes
"""
__all__ = [
'PinaDataLoader',
'SupervisedDataset',
'SamplePointDataset',
'UnsupervisedDataset',
'Batch',
'PinaDataModule',
'BaseDataset'
'PinaDataLoader', 'SupervisedDataset', 'SamplePointDataset',
'UnsupervisedDataset', 'Batch', 'PinaDataModule', 'BaseDataset'
]
from .pina_dataloader import PinaDataLoader

View File

@@ -22,10 +22,12 @@ class BaseDataset(Dataset):
dataset will be loaded.
"""
if cls is BaseDataset:
raise TypeError('BaseDataset cannot be instantiated directly. Use a subclass.')
raise TypeError(
'BaseDataset cannot be instantiated directly. Use a subclass.')
if not hasattr(cls, '__slots__'):
raise TypeError('Something is wrong, __slots__ must be defined in subclasses.')
return super().__new__(cls)
raise TypeError(
'Something is wrong, __slots__ must be defined in subclasses.')
return super(BaseDataset, cls).__new__(cls)
def __init__(self, problem, device):
""""
@@ -79,7 +81,8 @@ class BaseDataset(Dataset):
def __getattribute__(self, item):
attribute = super().__getattribute__(item)
if isinstance(attribute, LabelTensor) and attribute.dtype == torch.float32:
if isinstance(attribute,
LabelTensor) and attribute.dtype == torch.float32:
attribute = attribute.to(device=self.device).requires_grad_()
return attribute
@@ -101,7 +104,8 @@ class BaseDataset(Dataset):
if all(isinstance(x, int) for x in idx):
to_return_list = []
for i in self.__slots__:
to_return_list.append(getattr(self, i)[[idx]].to(self.device))
to_return_list.append(
getattr(self, i)[[idx]].to(self.device))
return to_return_list
raise ValueError(f'Invalid index {idx}')

View File

@@ -5,6 +5,7 @@ from .pina_subset import PinaSubset
class Batch:
def __init__(self, dataset_dict, idx_dict):
for k, v in dataset_dict.items():
@@ -29,5 +30,6 @@ class Batch:
def __getattr__(self, item):
if not item in dir(self):
raise AttributeError(f'Batch instance has no attribute {item}')
return PinaSubset(getattr(self, item).dataset,
return PinaSubset(
getattr(self, item).dataset,
getattr(self, item).indices[self.coordinates_dict[item]])

View File

@@ -50,7 +50,8 @@ class PinaDataLoader:
temp_dict[k] = slice(i * v, (i + 1) * v)
else:
temp_dict[k] = slice(i * v, len(self.dataset_dict[k]))
self.batches.append(Batch(idx_dict=temp_dict, dataset_dict=self.dataset_dict))
self.batches.append(
Batch(idx_dict=temp_dict, dataset_dict=self.dataset_dict))
def __iter__(self):
"""

View File

@@ -5,6 +5,7 @@ import torch
from ..utils import check_consistency
from .optimizer_interface import Optimizer
class TorchOptimizer(Optimizer):
def __init__(self, optimizer_class, **kwargs):
@@ -14,6 +15,5 @@ class TorchOptimizer(Optimizer):
self.kwargs = kwargs
def hook(self, parameters):
self.optimizer_instance = self.optimizer_class(
parameters, **self.kwargs
)
self.optimizer_instance = self.optimizer_class(parameters,
**self.kwargs)

View File

@@ -5,13 +5,13 @@ try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError:
from torch.optim.lr_scheduler import (
_LRScheduler as LRScheduler,
) # torch < 2.0
_LRScheduler as LRScheduler, ) # torch < 2.0
from ..utils import check_consistency
from .optimizer_interface import Optimizer
from .scheduler_interface import Scheduler
class TorchScheduler(Scheduler):
def __init__(self, scheduler_class, **kwargs):
@@ -23,5 +23,4 @@ class TorchScheduler(Scheduler):
def hook(self, optimizer):
check_consistency(optimizer, Optimizer)
self.scheduler_instance = self.scheduler_class(
optimizer.optimizer_instance, **self.kwargs
)
optimizer.optimizer_instance, **self.kwargs)

View File

@@ -17,15 +17,13 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
LightningModule methods.
"""
def __init__(
self,
def __init__(self,
models,
problem,
optimizers,
schedulers,
extra_features,
use_lt=True
):
use_lt=True):
"""
:param model: A torch neural network model instance.
:type model: torch.nn.Module
@@ -58,7 +56,8 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
model=models[idx],
input_variables=problem.input_variables,
output_variables=problem.output_variables,
extra_features=extra_features, )
extra_features=extra_features,
)
#Check scheduler consistency + encapsulation
if not isinstance(schedulers, list):
@@ -79,11 +78,9 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
# check length consistency optimizers
if len_model != len_optimizer:
raise ValueError(
"You must define one optimizer for each model."
raise ValueError("You must define one optimizer for each model."
f"Got {len_model} models, and {len_optimizer}"
" optimizers."
)
" optimizers.")
# extra features handling
@@ -92,7 +89,6 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
self._pina_schedulers = schedulers
self._pina_problem = problem
@abstractmethod
def forward(self, *args, **kwargs):
pass
@@ -142,5 +138,8 @@ class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
TODO
"""
for _, condition in problem.conditions.items():
if not set(self.accepted_condition_types).issubset(condition.condition_type):
raise ValueError(f'{self.__name__} support only dose not support condition {condition.condition_type}')
if not set(self.accepted_condition_types).issubset(
condition.condition_type):
raise ValueError(
f'{self.__name__} support only dose not support condition {condition.condition_type}'
)

View File

@@ -40,15 +40,13 @@ class SupervisedSolver(SolverInterface):
accepted_condition_types = ['supervised']
__name__ = 'SupervisedSolver'
def __init__(
self,
def __init__(self,
problem,
model,
loss=None,
optimizer=None,
scheduler=None,
extra_features=None
):
extra_features=None):
"""
:param AbstractProblem problem: The formualation of the problem.
:param torch.nn.Module model: The neural network model to use.
@@ -68,16 +66,13 @@ class SupervisedSolver(SolverInterface):
optimizer = TorchOptimizer(torch.optim.Adam, lr=0.001)
if scheduler is None:
scheduler = TorchScheduler(
torch.optim.lr_scheduler.ConstantLR)
scheduler = TorchScheduler(torch.optim.lr_scheduler.ConstantLR)
super().__init__(
models=model,
super().__init__(models=model,
problem=problem,
optimizers=optimizer,
schedulers=scheduler,
extra_features=extra_features
)
extra_features=extra_features)
# check consistency
check_consistency(loss, (LossInterface, _Loss), subclass=False)
@@ -107,10 +102,8 @@ class SupervisedSolver(SolverInterface):
"""
self._optimizer.hook(self._model.parameters())
self._scheduler.hook(self._optimizer)
return (
[self._optimizer.optimizer_instance],
[self._scheduler.scheduler_instance]
)
return ([self._optimizer.optimizer_instance],
[self._scheduler.scheduler_instance])
def training_step(self, batch, batch_idx):
"""Solver training step.
@@ -136,8 +129,7 @@ class SupervisedSolver(SolverInterface):
# for data driven mode
if not hasattr(condition, "output_points"):
raise NotImplementedError(
f"{type(self).__name__} works only in data-driven mode."
)
f"{type(self).__name__} works only in data-driven mode.")
output_pts = out[condition_idx == condition_id]
input_pts = pts[condition_idx == condition_id]
@@ -145,9 +137,7 @@ class SupervisedSolver(SolverInterface):
input_pts.labels = pts.labels
output_pts.labels = out.labels
loss = (
self.loss_data(input_pts=input_pts, output_pts=output_pts)
)
loss = (self.loss_data(input_pts=input_pts, output_pts=output_pts))
loss = loss.as_subclass(torch.Tensor)
self.log("mean_loss", float(loss), prog_bar=True, logger=True)

View File

@@ -29,34 +29,49 @@ class Poisson(SpatialProblem):
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
conditions = {
'gamma1': Condition(
domain=CartesianDomain({'x': [0, 1], 'y': 1}),
'gamma1':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': 1
}),
equation=FixedValue(0.0)),
'gamma2': Condition(
domain=CartesianDomain({'x': [0, 1], 'y': 0}),
'gamma2':
Condition(domain=CartesianDomain({
'x': [0, 1],
'y': 0
}),
equation=FixedValue(0.0)),
'gamma3': Condition(
domain=CartesianDomain({'x': 1, 'y': [0, 1]}),
'gamma3':
Condition(domain=CartesianDomain({
'x': 1,
'y': [0, 1]
}),
equation=FixedValue(0.0)),
'gamma4': Condition(
domain=CartesianDomain({'x': 0, 'y': [0, 1]}),
'gamma4':
Condition(domain=CartesianDomain({
'x': 0,
'y': [0, 1]
}),
equation=FixedValue(0.0)),
'D': Condition(
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
'D':
Condition(input_points=LabelTensor(torch.rand(size=(100, 2)),
['x', 'y']),
equation=my_laplace),
'data': Condition(
input_points=in_,
output_points=out_),
'data2': Condition(
input_points=in2_,
output_points=out2_),
'unsupervised': Condition(
'data':
Condition(input_points=in_, output_points=out_),
'data2':
Condition(input_points=in2_, output_points=out2_),
'unsupervised':
Condition(
input_points=LabelTensor(torch.rand(size=(45, 2)), ['x', 'y']),
conditional_variables=LabelTensor(torch.ones(size=(45, 1)), ['alpha']),
conditional_variables=LabelTensor(torch.ones(size=(45, 1)),
['alpha']),
),
'unsupervised2': Condition(
'unsupervised2':
Condition(
input_points=LabelTensor(torch.rand(size=(90, 2)), ['x', 'y']),
conditional_variables=LabelTensor(torch.ones(size=(90, 1)), ['alpha']),
conditional_variables=LabelTensor(torch.ones(size=(90, 1)),
['alpha']),
)
}
@@ -113,32 +128,49 @@ def test_data_module():
assert isinstance(loader, PinaDataLoader)
assert isinstance(loader, PinaDataLoader)
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False)
data_module = PinaDataModule(poisson,
device='cpu',
batch_size=10,
shuffle=False)
data_module.setup()
loader = data_module.train_dataloader()
assert len(loader) == 24
for i in loader:
assert len(i) <= 10
len_ref = sum([math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets])
len_real = sum([len(dataset) for dataset in data_module.splits['train'].values()])
len_ref = sum(
[math.ceil(len(dataset) * 0.7) for dataset in data_module.datasets])
len_real = sum(
[len(dataset) for dataset in data_module.splits['train'].values()])
assert len_ref == len_real
supervised_dataset = SupervisedDataset(poisson, device='cpu')
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[supervised_dataset])
data_module = PinaDataModule(poisson,
device='cpu',
batch_size=10,
shuffle=False,
datasets=[supervised_dataset])
data_module.setup()
loader = data_module.train_dataloader()
for batch in loader:
assert len(batch) <= 10
physics_dataset = SamplePointDataset(poisson, device='cpu')
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[physics_dataset])
data_module = PinaDataModule(poisson,
device='cpu',
batch_size=10,
shuffle=False,
datasets=[physics_dataset])
data_module.setup()
loader = data_module.train_dataloader()
for batch in loader:
assert len(batch) <= 10
unsupervised_dataset = UnsupervisedDataset(poisson, device='cpu')
data_module = PinaDataModule(poisson, device='cpu', batch_size=10, shuffle=False, datasets=[unsupervised_dataset])
data_module = PinaDataModule(poisson,
device='cpu',
batch_size=10,
shuffle=False,
datasets=[unsupervised_dataset])
data_module.setup()
loader = data_module.train_dataloader()
for batch in loader:
@@ -159,4 +191,6 @@ def test_loader():
assert i.supervised.input_points.requires_grad == True
assert i.physics.input_points.requires_grad == True
assert i.unsupervised.input_points.requires_grad == True
test_loader()

View File

@@ -4,29 +4,23 @@ import pytest
from pina.label_tensor import LabelTensor
data = torch.rand((20, 3))
labels_column = {
1: {
"name": "space",
"dof": ['x', 'y', 'z']
}
}
labels_row = {
0: {
"name": "samples",
"dof": range(20)
}
}
labels_column = {1: {"name": "space", "dof": ['x', 'y', 'z']}}
labels_row = {0: {"name": "samples", "dof": range(20)}}
labels_list = ['x', 'y', 'z']
labels_all = labels_column | labels_row
@pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all, labels_list])
@pytest.mark.parametrize("labels",
[labels_column, labels_row, labels_all, labels_list])
def test_constructor(labels):
print(LabelTensor(data, labels))
def test_wrong_constructor():
with pytest.raises(ValueError):
LabelTensor(data, ['a', 'b'])
@pytest.mark.parametrize("labels", [labels_column, labels_all])
@pytest.mark.parametrize("labels_te", ['z', ['z'], {'space': ['z']}])
def test_extract_column(labels, labels_te):
@@ -37,6 +31,7 @@ def test_extract_column(labels, labels_te):
assert new.shape[0] == 20
assert torch.all(torch.isclose(data[:, 2].reshape(-1, 1), new))
@pytest.mark.parametrize("labels", [labels_row, labels_all])
@pytest.mark.parametrize("labels_te", [{'samples': [2]}])
def test_extract_row(labels, labels_te):
@@ -47,10 +42,14 @@ def test_extract_row(labels, labels_te):
assert new.shape[0] == 1
assert torch.all(torch.isclose(data[2].reshape(1, -1), new))
@pytest.mark.parametrize("labels_te", [
{'samples': [2], 'space': ['z']},
{'space': 'z', 'samples': 2}
])
@pytest.mark.parametrize("labels_te", [{
'samples': [2],
'space': ['z']
}, {
'space': 'z',
'samples': 2
}])
def test_extract_2D(labels_te):
labels = labels_all
tensor = LabelTensor(data, labels)
@@ -60,6 +59,7 @@ def test_extract_2D(labels_te):
assert new.shape[0] == 1
assert torch.all(torch.isclose(data[2, 2].reshape(1, 1), new))
def test_extract_3D():
data = torch.rand(20, 3, 4)
labels = {
@@ -72,10 +72,7 @@ def test_extract_3D():
"dof": range(4)
},
}
labels_te = {
'space': ['x', 'z'],
'time': range(1, 4)
}
labels_te = {'space': ['x', 'z'], 'time': range(1, 4)}
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
@@ -84,15 +81,13 @@ def test_extract_3D():
assert new.shape[0] == 20
assert new.shape[1] == 2
assert new.shape[2] == 3
assert torch.all(torch.isclose(
data[:, 0::2, 1:4].reshape(20, 2, 3),
new
))
assert torch.all(torch.isclose(data[:, 0::2, 1:4].reshape(20, 2, 3), new))
assert tensor2.ndim == tensor.ndim
assert tensor2.shape == tensor.shape
assert tensor.full_labels == tensor2.full_labels
assert new.shape != tensor.shape
def test_concatenation_3D():
data_1 = torch.rand(20, 3, 4)
labels_1 = ['x', 'y', 'z', 'w']
@@ -174,6 +169,7 @@ def test_summation():
assert lt_sum.full_labels == labels_all
assert torch.eq(lt_sum.tensor, torch.ones(20, 3) * 2).all()
def test_append_3D():
data_1 = torch.rand(20, 3, 2)
labels_1 = ['x', 'y']
@@ -187,6 +183,7 @@ def test_append_3D():
assert lt1.full_labels[1]['dof'] == range(3)
assert lt1.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
def test_append_2D():
data_1 = torch.rand(20, 2)
labels_1 = ['x', 'y']
@@ -199,12 +196,31 @@ def test_append_2D():
assert lt1.full_labels[0]['dof'] == range(400)
assert lt1.full_labels[1]['dof'] == ['x', 'y', 'z', 'w']
def test_vstack_3D():
data_1 = torch.rand(20, 3, 2)
labels_1 = {1:{'dof': ['a', 'b', 'c'], 'name': 'first'}, 2: {'dof': ['x', 'y'], 'name': 'second'}}
labels_1 = {
1: {
'dof': ['a', 'b', 'c'],
'name': 'first'
},
2: {
'dof': ['x', 'y'],
'name': 'second'
}
}
lt1 = LabelTensor(data_1, labels_1)
data_2 = torch.rand(20, 3, 2)
labels_1 = {1:{'dof': ['a', 'b', 'c'], 'name': 'first'}, 2: {'dof': ['x', 'y'], 'name': 'second'}}
labels_1 = {
1: {
'dof': ['a', 'b', 'c'],
'name': 'first'
},
2: {
'dof': ['x', 'y'],
'name': 'second'
}
}
lt2 = LabelTensor(data_2, labels_1)
lt_stacked = LabelTensor.vstack([lt1, lt2])
assert lt_stacked.shape == (40, 3, 2)
@@ -214,6 +230,7 @@ def test_vstack_3D():
assert lt_stacked.full_labels[1]['name'] == 'first'
assert lt_stacked.full_labels[2]['name'] == 'second'
def test_vstack_2D():
data_1 = torch.rand(20, 2)
labels_1 = {1: {'dof': ['x', 'y'], 'name': 'second'}}
@@ -228,6 +245,7 @@ def test_vstack_2D():
assert lt_stacked.full_labels[0]['name'] == 0
assert lt_stacked.full_labels[1]['name'] == 'second'
def test_sorting():
data = torch.ones(20, 5)
data[:, 0] = data[:, 0] * 4

View File

@@ -54,8 +54,7 @@ def test_extract_order():
label_to_extract = ['c', 'a']
tensor = LabelTensor(data, labels)
new = tensor.extract(label_to_extract)
expected = torch.cat(
(data[:, 2].reshape(-1, 1), data[:, 0].reshape(-1, 1)),
expected = torch.cat((data[:, 2].reshape(-1, 1), data[:, 0].reshape(-1, 1)),
dim=1)
assert new.labels == label_to_extract
assert new.shape[1] == len(label_to_extract)
@@ -91,6 +90,7 @@ def test_getitem():
assert tensor_view.labels == ['a', 'c']
assert torch.allclose(tensor_view, data[:, 0::2])
def test_getitem2():
tensor = LabelTensor(data, labels)
tensor_view = tensor[:5]
@@ -101,6 +101,7 @@ def test_getitem2():
tensor_view = tensor[idx]
assert tensor_view.labels == labels
def test_slice():
tensor = LabelTensor(data, labels)
tensor_view = tensor[:5, :2]

View File

@@ -39,6 +39,7 @@ def test_grad_scalar_output():
]
assert torch.allclose(grad_tensor_s, true_val)
def test_grad_vector_output():
grad_tensor_v = grad(tensor_v, inp)
true_val = torch.cat(
@@ -75,6 +76,7 @@ def test_grad_vector_output():
]
assert torch.allclose(grad_tensor_v, true_val)
def test_div_vector_output():
div_tensor_v = div(tensor_v, inp)
true_val = 2*torch.sum(inp, dim=1).reshape(-1,1)
@@ -88,6 +90,7 @@ def test_div_vector_output():
assert div_tensor_v.labels == [f'dadx+dbdy']
assert torch.allclose(div_tensor_v, true_val)
def test_laplacian_scalar_output():
laplace_tensor_s = laplacian(tensor_s, inp)
true_val = 6*torch.ones_like(laplace_tensor_s)
@@ -101,6 +104,7 @@ def test_laplacian_scalar_output():
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
assert torch.allclose(laplace_tensor_s, true_val)
def test_laplacian_vector_output():
laplace_tensor_v = laplacian(tensor_v, inp)
true_val = 2*torch.ones_like(tensor_v)

View File

@@ -1,19 +1,17 @@
import torch
import pytest
from pina import TorchOptimizer
opt_list = [
torch.optim.Adam,
torch.optim.AdamW,
torch.optim.SGD,
torch.optim.RMSprop
torch.optim.Adam, torch.optim.AdamW, torch.optim.SGD, torch.optim.RMSprop
]
@pytest.mark.parametrize("optimizer_class", opt_list)
def test_constructor(optimizer_class):
TorchOptimizer(optimizer_class, lr=1e-3)
@pytest.mark.parametrize("optimizer_class", opt_list)
def test_hook(optimizer_class):
opt = TorchOptimizer(optimizer_class, lr=1e-3)

View File

@@ -91,6 +91,7 @@ def test_discretise_domain():
poisson_problem.discretise_domain(n)
def test_sampling_few_variables():
n = 10
poisson_problem = Poisson()
@@ -115,9 +116,8 @@ def test_variables_correct_order_sampling():
variables=['y'])
assert poisson_problem.input_pts['D'].labels == sorted(
poisson_problem.input_variables)
poisson_problem.discretise_domain(n,
'grid',
locations=['D'])
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
assert poisson_problem.input_pts['D'].labels == sorted(
poisson_problem.input_variables)
poisson_problem.discretise_domain(n,
@@ -131,6 +131,7 @@ def test_variables_correct_order_sampling():
assert poisson_problem.input_pts['D'].labels == sorted(
poisson_problem.input_variables)
def test_add_points():
poisson_problem = Poisson()
poisson_problem.discretise_domain(0,
@@ -139,8 +140,10 @@ def test_add_points():
variables=['x', 'y'])
new_pts = LabelTensor(torch.tensor([[0.5, -0.5]]), labels=['x', 'y'])
poisson_problem.add_points({'D': new_pts})
assert torch.isclose(poisson_problem.input_pts['D'].extract('x'), new_pts.extract('x'))
assert torch.isclose(poisson_problem.input_pts['D'].extract('y'), new_pts.extract('y'))
assert torch.isclose(poisson_problem.input_pts['D'].extract('x'),
new_pts.extract('x'))
assert torch.isclose(poisson_problem.input_pts['D'].extract('y'),
new_pts.extract('y'))
def test_collector():