* Adding Collector for handling data sampling/collection before dataset/dataloader
* Modify domain by adding sample_mode, variables as property * Small change concatenate -> cat in lno/avno * Create different factory classes for conditions
This commit is contained in:
committed by
Nicola Demo
parent
aef5a5d590
commit
1bd3f40f54
72
pina/collector.py
Normal file
72
pina/collector.py
Normal file
@@ -0,0 +1,72 @@
|
||||
from .utils import check_consistency, merge_tensors
|
||||
|
||||
class Collector:
|
||||
def __init__(self, problem):
|
||||
self.problem = problem # hook Collector <-> Problem
|
||||
self.data_collections = {name : {} for name in self.problem.conditions} # collection of data
|
||||
self.is_conditions_ready = {
|
||||
name : False for name in self.problem.conditions} # names of the conditions that need to be sampled
|
||||
self.full = False # collector full, all points for all conditions are given and the data are ready to be used in trainig
|
||||
|
||||
@property
|
||||
def full(self):
|
||||
return all(self.is_conditions_ready.values())
|
||||
|
||||
@full.setter
|
||||
def full(self, value):
|
||||
check_consistency(value, bool)
|
||||
self._full = value
|
||||
|
||||
@property
|
||||
def problem(self):
|
||||
return self._problem
|
||||
|
||||
@problem.setter
|
||||
def problem(self, value):
|
||||
self._problem = value
|
||||
|
||||
def store_fixed_data(self):
|
||||
# loop over all conditions
|
||||
for condition_name, condition in self.problem.conditions.items():
|
||||
# if the condition is not ready and domain is not attribute
|
||||
# of condition, we get and store the data
|
||||
if (not self.is_conditions_ready[condition_name]) and (not hasattr(condition, "domain")):
|
||||
# get data
|
||||
keys = condition.__slots__
|
||||
values = [getattr(condition, name) for name in keys]
|
||||
self.data_collections[condition_name] = dict(zip(keys, values))
|
||||
# condition now is ready
|
||||
self.is_conditions_ready[condition_name] = True
|
||||
|
||||
def store_sample_domains(self, n, mode, variables, sample_locations):
|
||||
# loop over all locations
|
||||
for loc in sample_locations:
|
||||
# get condition
|
||||
condition = self.problem.conditions[loc]
|
||||
keys = ["input_points", "equation"]
|
||||
# if the condition is not ready, we get and store the data
|
||||
if (not self.is_conditions_ready[loc]):
|
||||
# if it is the first time we sample
|
||||
if not self.data_collections[loc]:
|
||||
already_sampled = []
|
||||
# if we have sampled the condition but not all variables
|
||||
else:
|
||||
already_sampled = [self.data_collections[loc].input_points]
|
||||
# if the condition is ready but we want to sample again
|
||||
else:
|
||||
self.is_conditions_ready[loc] = False
|
||||
already_sampled = []
|
||||
|
||||
# get the samples
|
||||
samples = [
|
||||
condition.domain.sample(n=n, mode=mode, variables=variables)
|
||||
] + already_sampled
|
||||
pts = merge_tensors(samples)
|
||||
if (
|
||||
sorted(self.data_collections[loc].input_points.labels)
|
||||
==
|
||||
sorted(self.problem.input_variables)
|
||||
):
|
||||
self.is_conditions_ready[loc] = True
|
||||
values = [pts, condition.equation]
|
||||
self.data_collections[loc] = dict(zip(keys, values))
|
||||
Reference in New Issue
Block a user