* Adding Collector for handling data sampling/collection before dataset/dataloader

* Modify domain by adding sample_mode, variables as property
* Small change concatenate -> cat in lno/avno
* Create different factory classes for conditions
This commit is contained in:
Dario Coscia
2024-10-04 13:57:18 +02:00
committed by Nicola Demo
parent aef5a5d590
commit 1bd3f40f54
18 changed files with 225 additions and 277 deletions

View File

@@ -1,7 +1,7 @@
"""Module Averaging Neural Operator."""
import torch
from torch import nn, concatenate
from torch import nn, cat
from .layers import AVNOBlock
from .base_no import KernelNeuralOperator
from pina.utils import check_consistency
@@ -110,9 +110,9 @@ class AveragingNeuralOperator(KernelNeuralOperator):
"""
points_tmp = x.extract(self.coordinates_indices)
new_batch = x.extract(self.field_indices)
new_batch = concatenate((new_batch, points_tmp), dim=-1)
new_batch = cat((new_batch, points_tmp), dim=-1)
new_batch = self._lifting_operator(new_batch)
new_batch = self._integral_kernels(new_batch)
new_batch = concatenate((new_batch, points_tmp), dim=-1)
new_batch = cat((new_batch, points_tmp), dim=-1)
new_batch = self._projection_operator(new_batch)
return new_batch

View File

@@ -1,7 +1,7 @@
"""Module LowRank Neural Operator."""
import torch
from torch import nn, concatenate
from torch import nn, cat
from pina.utils import check_consistency
@@ -145,4 +145,4 @@ class LowRankNeuralOperator(KernelNeuralOperator):
for module in self._integral_kernels:
x = module(x, coords)
# projecting
return self._projection_operator(concatenate((x, coords), dim=-1))
return self._projection_operator(cat((x, coords), dim=-1))