fix switch_optimizer callback

This commit is contained in:
Giovanni Canali
2025-07-23 17:42:25 +02:00
committed by Giovanni Canali
parent 6d10989d89
commit 1ed14916f1
2 changed files with 65 additions and 40 deletions

View File

@@ -21,26 +21,30 @@ class SwitchOptimizer(Callback):
single :class:`torch.optim.Optimizer` instance or a list of them
for multiple model solver.
:type new_optimizers: pina.optim.TorchOptimizer | list
:param epoch_switch: The epoch at which the optimizer switch occurs.
:type epoch_switch: int
:param int epoch_switch: The epoch at which the optimizer switch occurs.
Example:
>>> switch_callback = SwitchOptimizer(new_optimizers=optimizer,
>>> epoch_switch=10)
>>> optimizer = TorchOptimizer(torch.optim.Adam, lr=0.01)
>>> switch_callback = SwitchOptimizer(
>>> new_optimizers=optimizer, epoch_switch=10
>>> )
"""
super().__init__()
# Check if epoch_switch is greater than 1
if epoch_switch < 1:
raise ValueError("epoch_switch must be greater than one.")
# If new_optimizers is not a list, convert it to a list
if not isinstance(new_optimizers, list):
new_optimizers = [new_optimizers]
# check type consistency
# Check consistency
check_consistency(epoch_switch, int)
for optimizer in new_optimizers:
check_consistency(optimizer, TorchOptimizer)
check_consistency(epoch_switch, int)
# save new optimizers
# Store the new optimizers and epoch switch
self._new_optimizers = new_optimizers
self._epoch_switch = epoch_switch
@@ -48,18 +52,21 @@ class SwitchOptimizer(Callback):
"""
Switch the optimizer at the start of the specified training epoch.
:param trainer: The trainer object managing the training process.
:type trainer: pytorch_lightning.Trainer
:param lightning.pytorch.Trainer trainer: The trainer object managing
the training process.
:param _: Placeholder argument (not used).
:return: None
:rtype: None
"""
# Check if the current epoch matches the switch epoch
if trainer.current_epoch == self._epoch_switch:
optims = []
# Hook the new optimizers to the model parameters
for idx, optim in enumerate(self._new_optimizers):
optim.hook(trainer.solver._pina_models[idx].parameters())
optims.append(optim)
# Update the solver's optimizers
trainer.solver._pina_optimizers = optims
# Update the trainer's strategy optimizers
trainer.strategy.optimizers = [o.instance for o in optims]