fix switch_optimizer callback

This commit is contained in:
Giovanni Canali
2025-07-23 17:42:25 +02:00
committed by Giovanni Canali
parent 6d10989d89
commit 1ed14916f1
2 changed files with 65 additions and 40 deletions

View File

@@ -1,45 +1,63 @@
from pina.callback import SwitchOptimizer
import torch
import pytest
from pina.solver import PINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
from pina.optim import TorchOptimizer
# make the problem
poisson_problem = Poisson()
boundaries = ["g1", "g2", "g3", "g4"]
n = 10
poisson_problem.discretise_domain(n, "grid", domains=boundaries)
poisson_problem.discretise_domain(n, "grid", domains="D")
model = FeedForward(
len(poisson_problem.input_variables), len(poisson_problem.output_variables)
)
# make the solver
solver = PINN(problem=poisson_problem, model=model)
adam = TorchOptimizer(torch.optim.Adam, lr=0.01)
lbfgs = TorchOptimizer(torch.optim.LBFGS, lr=0.001)
from pina.callback import SwitchOptimizer
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
def test_switch_optimizer_constructor():
SwitchOptimizer(adam, epoch_switch=10)
# Define the problem
problem = Poisson()
problem.discretise_domain(10)
model = FeedForward(len(problem.input_variables), len(problem.output_variables))
# Define the optimizer
optimizer = TorchOptimizer(torch.optim.Adam)
# Initialize the solver
solver = PINN(problem=problem, model=model, optimizer=optimizer)
# Define new optimizers for testing
lbfgs = TorchOptimizer(torch.optim.LBFGS, lr=1.0)
adamW = TorchOptimizer(torch.optim.AdamW, lr=0.01)
def test_switch_optimizer_routine():
# check initial optimizer
@pytest.mark.parametrize("epoch_switch", [5, 10])
@pytest.mark.parametrize("new_opt", [lbfgs, adamW])
def test_switch_optimizer_constructor(new_opt, epoch_switch):
# Constructor
SwitchOptimizer(new_optimizers=new_opt, epoch_switch=epoch_switch)
# Should fail if epoch_switch is less than 1
with pytest.raises(ValueError):
SwitchOptimizer(new_optimizers=new_opt, epoch_switch=0)
@pytest.mark.parametrize("epoch_switch", [5, 10])
@pytest.mark.parametrize("new_opt", [lbfgs, adamW])
def test_switch_optimizer_routine(new_opt, epoch_switch):
# Check if the optimizer is initialized correctly
solver.configure_optimizers()
assert solver.optimizer.instance.__class__ == torch.optim.Adam
# make the trainer
switch_opt_callback = SwitchOptimizer(lbfgs, epoch_switch=3)
# Initialize the trainer
switch_opt_callback = SwitchOptimizer(
new_optimizers=new_opt, epoch_switch=epoch_switch
)
trainer = Trainer(
solver=solver,
callbacks=[switch_opt_callback],
callbacks=switch_opt_callback,
accelerator="cpu",
max_epochs=5,
max_epochs=epoch_switch + 2,
)
trainer.train()
assert solver.optimizer.instance.__class__ == torch.optim.LBFGS
# Check that the trainer strategy optimizers have been updated
assert solver.optimizer.instance.__class__ == new_opt.instance.__class__
assert (
trainer.strategy.optimizers[0].__class__ == new_opt.instance.__class__
)