lh solved (#55)
This commit is contained in:
10
pina/span.py
10
pina/span.py
@@ -3,6 +3,7 @@ import torch
|
||||
|
||||
from .location import Location
|
||||
from .label_tensor import LabelTensor
|
||||
from .utils import torch_lhs
|
||||
|
||||
|
||||
class Span(Location):
|
||||
@@ -41,10 +42,7 @@ class Span(Location):
|
||||
elif mode == 'grid':
|
||||
pts = torch.linspace(0, 1, n).reshape(-1, 1)
|
||||
elif mode == 'lh' or mode == 'latin':
|
||||
from scipy.stats import qmc
|
||||
sampler = qmc.LatinHypercube(d=dim)
|
||||
pts = sampler.random(n)
|
||||
pts = torch.from_numpy(pts)
|
||||
pts = torch_lhs(n, dim)
|
||||
|
||||
pts *= bounds[:, 1] - bounds[:, 0]
|
||||
pts += bounds[:, 0]
|
||||
@@ -83,7 +81,7 @@ class Span(Location):
|
||||
return result
|
||||
|
||||
def _Nd_sampler(n, mode, variables):
|
||||
""" Sample ll the variables together """
|
||||
""" Sample all the variables together """
|
||||
pairs = [(k, v) for k, v in self.range_.items() if k in variables]
|
||||
keys, values = map(list, zip(*pairs))
|
||||
bounds = torch.tensor(values)
|
||||
@@ -107,7 +105,7 @@ class Span(Location):
|
||||
|
||||
if mode in ['grid', 'chebyshev']:
|
||||
return _1d_sampler(n, mode, variables)
|
||||
elif mode in ['random', 'lhs']:
|
||||
elif mode in ['random', 'lh', 'latin']:
|
||||
return _Nd_sampler(n, mode, variables)
|
||||
else:
|
||||
raise ValueError(f'mode={mode} is not valid.')
|
||||
|
||||
@@ -5,6 +5,8 @@ from torch.utils.data import DataLoader, default_collate, ConcatDataset
|
||||
|
||||
from .label_tensor import LabelTensor
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def number_parameters(model, aggregate=True, only_trainable=True): # TODO: check
|
||||
"""
|
||||
@@ -49,6 +51,40 @@ def merge_two_tensors(tensor1, tensor2):
|
||||
return tensor1.append(tensor2)
|
||||
|
||||
|
||||
def torch_lhs(n, dim):
|
||||
"""Latin Hypercube Sampling torch routine.
|
||||
Sampling in range $[0, 1)^d$.
|
||||
|
||||
:param int n: number of samples
|
||||
:param int dim: dimensions of latin hypercube
|
||||
:return: samples
|
||||
:rtype: torch.tensor
|
||||
"""
|
||||
|
||||
if not isinstance(n, int):
|
||||
raise TypeError('number of point n must be int')
|
||||
|
||||
if not isinstance(dim, int):
|
||||
raise TypeError('dim must be int')
|
||||
|
||||
if dim < 1:
|
||||
raise ValueError('dim must be greater than one')
|
||||
|
||||
samples = torch.rand(size=(n, dim))
|
||||
|
||||
perms = torch.tile(torch.arange(1, n + 1), (dim, 1))
|
||||
|
||||
for row in range(dim):
|
||||
idx_perm = torch.randperm(perms.shape[-1])
|
||||
perms[row, :] = perms[row, idx_perm]
|
||||
|
||||
perms = perms.T
|
||||
|
||||
samples = (perms - samples) / n
|
||||
|
||||
return samples
|
||||
|
||||
|
||||
class PinaDataset():
|
||||
|
||||
def __init__(self, pinn) -> None:
|
||||
|
||||
@@ -63,6 +63,12 @@ def test_span_pts():
|
||||
pinn.span_pts(n, 'random', locations=['D'])
|
||||
assert pinn.input_pts['D'].shape[0] == n
|
||||
|
||||
pinn.span_pts(n, 'latin', locations=['D'])
|
||||
assert pinn.input_pts['D'].shape[0] == n
|
||||
|
||||
pinn.span_pts(n, 'lh', locations=['D'])
|
||||
assert pinn.input_pts['D'].shape[0] == n
|
||||
|
||||
|
||||
def test_train():
|
||||
pinn = PINN(problem, model)
|
||||
|
||||
Reference in New Issue
Block a user