Co-authored-by: GiovanniCanali <giovanni.canali98@yahoo.it>
This commit is contained in:
avisquid
2025-10-03 14:37:56 -04:00
committed by GitHub
parent b5e4d13663
commit 2108c76d14
11 changed files with 885 additions and 39 deletions

View File

@@ -0,0 +1,194 @@
import pytest
import torch
import copy
from pina.model import EquivariantGraphNeuralOperator
from pina.graph import Graph
# Utility to create graphs
def make_graph(include_vel=True, use_edge_attr=True):
data = dict(
x=torch.rand(10, 4),
pos=torch.rand(10, 3),
edge_index=torch.randint(0, 10, (2, 20)),
edge_attr=torch.randn(20, 2) if use_edge_attr else None,
)
if include_vel:
data["vel"] = torch.rand(10, 3)
return Graph(**data)
@pytest.mark.parametrize("n_egno_layers", [1, 3])
@pytest.mark.parametrize("time_steps", [1, 3])
@pytest.mark.parametrize("time_emb_dim", [4, 8])
@pytest.mark.parametrize("max_time_idx", [10, 20])
def test_constructor(n_egno_layers, time_steps, time_emb_dim, max_time_idx):
# Create graph and model
graph = make_graph()
EquivariantGraphNeuralOperator(
n_egno_layers=n_egno_layers,
node_feature_dim=graph.x.shape[1],
edge_feature_dim=graph.edge_attr.shape[1],
pos_dim=graph.pos.shape[1],
modes=5,
time_steps=time_steps,
time_emb_dim=time_emb_dim,
max_time_idx=max_time_idx,
)
# Should fail if n_egno_layers is negative
with pytest.raises(AssertionError):
EquivariantGraphNeuralOperator(
n_egno_layers=-1,
node_feature_dim=graph.x.shape[1],
edge_feature_dim=graph.edge_attr.shape[1],
pos_dim=graph.pos.shape[1],
modes=5,
time_steps=time_steps,
time_emb_dim=time_emb_dim,
max_time_idx=max_time_idx,
)
# Should fail if time_steps is negative
with pytest.raises(AssertionError):
EquivariantGraphNeuralOperator(
n_egno_layers=n_egno_layers,
node_feature_dim=graph.x.shape[1],
edge_feature_dim=graph.edge_attr.shape[1],
pos_dim=graph.pos.shape[1],
modes=5,
time_steps=-1,
time_emb_dim=time_emb_dim,
max_time_idx=max_time_idx,
)
# Should fail if max_time_idx is negative
with pytest.raises(AssertionError):
EquivariantGraphNeuralOperator(
n_egno_layers=n_egno_layers,
node_feature_dim=graph.x.shape[1],
edge_feature_dim=graph.edge_attr.shape[1],
pos_dim=graph.pos.shape[1],
modes=5,
time_steps=time_steps,
time_emb_dim=time_emb_dim,
max_time_idx=-1,
)
# Should fail if time_emb_dim is negative
with pytest.raises(AssertionError):
EquivariantGraphNeuralOperator(
n_egno_layers=n_egno_layers,
node_feature_dim=graph.x.shape[1],
edge_feature_dim=graph.edge_attr.shape[1],
pos_dim=graph.pos.shape[1],
modes=5,
time_steps=time_steps,
time_emb_dim=-1,
max_time_idx=max_time_idx,
)
@pytest.mark.parametrize("n_egno_layers", [1, 3])
@pytest.mark.parametrize("time_steps", [1, 5])
@pytest.mark.parametrize("modes", [1, 3, 10])
@pytest.mark.parametrize("use_edge_attr", [True, False])
def test_forward(n_egno_layers, time_steps, modes, use_edge_attr):
# Create graph and model
graph = make_graph(use_edge_attr=use_edge_attr)
model = EquivariantGraphNeuralOperator(
n_egno_layers=n_egno_layers,
node_feature_dim=graph.x.shape[1],
edge_feature_dim=graph.edge_attr.shape[1] if use_edge_attr else 0,
pos_dim=graph.pos.shape[1],
modes=modes,
time_steps=time_steps,
)
# Checks on output shapes
output_ = model(graph)
assert output_.x.shape == (time_steps, *graph.x.shape)
assert output_.pos.shape == (time_steps, *graph.pos.shape)
assert output_.vel.shape == (time_steps, *graph.vel.shape)
# Should fail graph has no vel attribute
with pytest.raises(ValueError):
graph_no_vel = make_graph(include_vel=False)
model(graph_no_vel)
@pytest.mark.parametrize("n_egno_layers", [1, 3])
@pytest.mark.parametrize("time_steps", [1, 5])
@pytest.mark.parametrize("modes", [1, 3, 10])
@pytest.mark.parametrize("use_edge_attr", [True, False])
def test_backward(n_egno_layers, time_steps, modes, use_edge_attr):
# Create graph and model
graph = make_graph(use_edge_attr=use_edge_attr)
model = EquivariantGraphNeuralOperator(
n_egno_layers=n_egno_layers,
node_feature_dim=graph.x.shape[1],
edge_feature_dim=graph.edge_attr.shape[1] if use_edge_attr else 0,
pos_dim=graph.pos.shape[1],
modes=modes,
time_steps=time_steps,
)
# Set requires_grad and perform forward pass
graph.x.requires_grad_()
graph.pos.requires_grad_()
graph.vel.requires_grad_()
out = model(graph)
# Checks on gradients
loss = torch.mean(out.x) + torch.mean(out.pos) + torch.mean(out.vel)
loss.backward()
assert graph.x.grad.shape == graph.x.shape
assert graph.pos.grad.shape == graph.pos.shape
assert graph.vel.grad.shape == graph.vel.shape
@pytest.mark.parametrize("n_egno_layers", [1, 3])
@pytest.mark.parametrize("time_steps", [1, 5])
@pytest.mark.parametrize("modes", [1, 3, 10])
@pytest.mark.parametrize("use_edge_attr", [True, False])
def test_equivariance(n_egno_layers, time_steps, modes, use_edge_attr):
graph = make_graph(use_edge_attr=use_edge_attr)
model = EquivariantGraphNeuralOperator(
n_egno_layers=n_egno_layers,
node_feature_dim=graph.x.shape[1],
edge_feature_dim=graph.edge_attr.shape[1] if use_edge_attr else 0,
pos_dim=graph.pos.shape[1],
modes=modes,
time_steps=time_steps,
).eval()
# Random rotation
rotation = torch.linalg.qr(
torch.rand(graph.pos.shape[1], graph.pos.shape[1])
).Q
if torch.det(rotation) < 0:
rotation[:, 0] *= -1
# Random translation
translation = torch.rand(1, graph.pos.shape[1])
# Transform graph (no translation for velocity)
graph_rot = copy.deepcopy(graph)
graph_rot.pos = graph.pos @ rotation.T + translation
graph_rot.vel = graph.vel @ rotation.T
# Get model outputs
out1 = model(graph)
out2 = model(graph_rot)
# Unpack outputs
h1, pos1, vel1 = out1.x, out1.pos, out1.vel
h2, pos2, vel2 = out2.x, out2.pos, out2.vel
assert torch.allclose(pos2, pos1 @ rotation.T + translation, atol=1e-5)
assert torch.allclose(vel2, vel1 @ rotation.T, atol=1e-5)
assert torch.allclose(h1, h2, atol=1e-5)