fix doc model part 2
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
TODO: Add title.
|
||||
Module for residual blocks and enhanced linear layers.
|
||||
"""
|
||||
|
||||
import torch
|
||||
@@ -8,16 +8,16 @@ from ...utils import check_consistency
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
"""Residual block base class. Implementation of a residual block.
|
||||
"""
|
||||
Residual block class.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: He, Kaiming, et al.
|
||||
*Deep residual learning for image recognition.*
|
||||
Proceedings of the IEEE conference on computer vision
|
||||
and pattern recognition. 2016..
|
||||
Proceedings of the IEEE conference on computer vision and pattern
|
||||
recognition. 2016.
|
||||
DOI: `<https://arxiv.org/pdf/1512.03385.pdf>`_.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -29,18 +29,15 @@ class ResidualBlock(nn.Module):
|
||||
activation=torch.nn.ReLU(),
|
||||
):
|
||||
"""
|
||||
Initializes the ResidualBlock module.
|
||||
Initialization of the :class:`ResidualBlock` class.
|
||||
|
||||
:param int input_dim: Dimension of the input to pass to the
|
||||
feedforward linear layer.
|
||||
:param int output_dim: Dimension of the output from the
|
||||
residual layer.
|
||||
:param int hidden_dim: Hidden dimension for mapping the input
|
||||
(first block).
|
||||
:param bool spectral_norm: Apply spectral normalization to feedforward
|
||||
layers, defaults to False.
|
||||
:param torch.nn.Module activation: Cctivation function after first
|
||||
block.
|
||||
:param int input_dim: The input dimension.
|
||||
:param int output_dim: The output dimension.
|
||||
:param int hidden_dim: The hidden dimension.
|
||||
:param bool spectral_norm: If ``True``, the spectral normalization is
|
||||
applied to the feedforward layers. Default is ``False``.
|
||||
:param torch.nn.Module activation: The activation function.
|
||||
Default is :class:`torch.nn.ReLU`.
|
||||
|
||||
"""
|
||||
super().__init__()
|
||||
@@ -64,10 +61,11 @@ class ResidualBlock(nn.Module):
|
||||
self._l3 = self._spect_norm(nn.Linear(input_dim, output_dim))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for residual block layer.
|
||||
"""
|
||||
Forward pass.
|
||||
|
||||
:param torch.Tensor x: Input tensor for the residual layer.
|
||||
:return: Output tensor for the residual layer.
|
||||
:param torch.Tensor x: The input tensor.
|
||||
:return: The output tensor.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
y = self._activation(self._l1(x))
|
||||
@@ -76,10 +74,10 @@ class ResidualBlock(nn.Module):
|
||||
return y + x
|
||||
|
||||
def _spect_norm(self, x):
|
||||
"""Perform spectral norm on the layers.
|
||||
"""
|
||||
Perform spectral normalization on the network layers.
|
||||
|
||||
:param x: A torch.nn.Module Linear layer
|
||||
:type x: torch.nn.Module
|
||||
:param torch.nn.Module x: A :class:`torch.nn.Linear` layer.
|
||||
:return: The spectral norm of the layer
|
||||
:rtype: torch.nn.Module
|
||||
"""
|
||||
@@ -88,37 +86,31 @@ class ResidualBlock(nn.Module):
|
||||
|
||||
class EnhancedLinear(torch.nn.Module):
|
||||
"""
|
||||
A wrapper class for enhancing a linear layer with activation and/or dropout.
|
||||
Enhanced Linear layer class.
|
||||
|
||||
:param layer: The linear layer to be enhanced.
|
||||
:type layer: torch.nn.Module
|
||||
:param activation: The activation function to be applied after the linear
|
||||
layer.
|
||||
:type activation: torch.nn.Module
|
||||
:param dropout: The dropout probability to be applied after the activation
|
||||
(if provided).
|
||||
:type dropout: float
|
||||
|
||||
:Example:
|
||||
|
||||
>>> linear_layer = torch.nn.Linear(10, 20)
|
||||
>>> activation = torch.nn.ReLU()
|
||||
>>> dropout_prob = 0.5
|
||||
>>> enhanced_linear = EnhancedLinear(linear_layer, activation, dropout_prob)
|
||||
This class is a wrapper for enhancing a linear layer with activation and/or
|
||||
dropout.
|
||||
"""
|
||||
|
||||
def __init__(self, layer, activation=None, dropout=None):
|
||||
"""
|
||||
Initializes the EnhancedLinear module.
|
||||
Initialization of the :class:`EnhancedLinear` class.
|
||||
|
||||
:param layer: The linear layer to be enhanced.
|
||||
:type layer: torch.nn.Module
|
||||
:param activation: The activation function to be applied after the
|
||||
linear layer.
|
||||
:type activation: torch.nn.Module
|
||||
:param dropout: The dropout probability to be applied after the
|
||||
activation (if provided).
|
||||
:type dropout: float
|
||||
:param torch.nn.Module layer: The linear layer to be enhanced.
|
||||
:param torch.nn.Module activation: The activation function. Default is
|
||||
``None``.
|
||||
:param float dropout: The dropout probability. Default is ``None``.
|
||||
|
||||
:Example:
|
||||
|
||||
>>> linear_layer = torch.nn.Linear(10, 20)
|
||||
>>> activation = torch.nn.ReLU()
|
||||
>>> dropout_prob = 0.5
|
||||
>>> enhanced_linear = EnhancedLinear(
|
||||
... linear_layer,
|
||||
... activation,
|
||||
... dropout_prob
|
||||
... )
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
@@ -146,23 +138,19 @@ class EnhancedLinear(torch.nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass through the enhanced linear module.
|
||||
Forward pass.
|
||||
|
||||
:param x: Input tensor.
|
||||
:type x: torch.Tensor
|
||||
|
||||
:return: Output tensor after passing through the enhanced linear module.
|
||||
:param torch.Tensor x: The input tensor.
|
||||
:return: The output tensor.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
return self._model(x)
|
||||
|
||||
def _drop(self, p):
|
||||
"""
|
||||
Applies dropout with probability p.
|
||||
|
||||
:param p: Dropout probability.
|
||||
:type p: float
|
||||
Apply dropout with probability p.
|
||||
|
||||
:param float p: Dropout probability.
|
||||
:return: Dropout layer with the specified probability.
|
||||
:rtype: torch.nn.Dropout
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user