fix pinn doc

This commit is contained in:
giovanni
2025-03-13 16:50:05 +01:00
committed by Nicola Demo
parent 9a26c94e07
commit 28ef4c823b
8 changed files with 377 additions and 337 deletions

View File

@@ -1,4 +1,4 @@
"""Module for Gradient PINN."""
"""Module for the Gradient PINN solver."""
import torch
@@ -9,14 +9,14 @@ from ...problem import SpatialProblem
class GradientPINN(PINN):
r"""
Gradient Physics Informed Neural Network (GradientPINN) solver class.
This class implements Gradient Physics Informed Neural
Network solver, using a user specified ``model`` to solve a specific
``problem``. It can be used for solving both forward and inverse problems.
Gradient Physics-Informed Neural Network (GradientPINN) solver class.
This class implements the Gradient Physics-Informed Neural Network solver,
using a user specified ``model`` to solve a specific ``problem``.
It can be used to solve both forward and inverse problems.
The Gradient Physics Informed Network aims to find
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
of the differential problem:
The Gradient Physics-Informed Neural Network solver aims to find the
solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential
problem:
.. math::
@@ -26,7 +26,7 @@ class GradientPINN(PINN):
\mathbf{x}\in\partial\Omega
\end{cases}
minimizing the loss function
minimizing the loss function;
.. math::
\mathcal{L}_{\rm{problem}} =& \frac{1}{N}\sum_{i=1}^N
@@ -39,8 +39,7 @@ class GradientPINN(PINN):
\nabla_{\mathbf{x}}\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i))
where :math:`\mathcal{L}` is a specific loss function,
default Mean Square Error:
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
.. math::
\mathcal{L}(v) = \| v \|^2_2.
@@ -54,9 +53,8 @@ class GradientPINN(PINN):
DOI: `10.1016 <https://doi.org/10.1016/j.cma.2022.114823>`_.
.. note::
This class can only work for problems inheriting
from at least :class:`~pina.problem.spatial_problem.SpatialProblem`
class.
This class is only compatible with problems that inherit from the
:class:`~pina.problem.SpatialProblem` class.
"""
def __init__(
@@ -69,19 +67,23 @@ class GradientPINN(PINN):
loss=None,
):
"""
:param torch.nn.Module model: The neural network model to use.
:param AbstractProblem problem: The formulation of the problem. It must
inherit from at least
:class:`~pina.problem.spatial_problem.SpatialProblem` to compute
the gradient of the loss.
:param torch.optim.Optimizer optimizer: The neural network optimizer to
use; default `None`.
:param torch.optim.LRScheduler scheduler: Learning rate scheduler;
default `None`.
:param WeightingInterface weighting: The weighting schema to use;
default `None`.
:param torch.nn.Module loss: The loss function to be minimized;
default `None`.
Initialization of the :class:`GradientPINN` class.
:param AbstractProblem problem: The problem to be solved.
It must inherit from at least :class:`~pina.problem.SpatialProblem`
to compute the gradient of the loss.
:param torch.nn.Module model: The neural network model to be used.
:param torch.optim.Optimizer optimizer: The optimizer to be used.
If `None`, the Adam optimizer is used. Default is ``None``.
:param torch.optim.LRScheduler scheduler: Learning rate scheduler.
If `None`, the constant learning rate scheduler is used.
Default is ``None``.
:param WeightingInterface weighting: The weighting schema to be used.
If `None`, no weighting schema is used. Default is ``None``.
:param torch.nn.Module loss: The loss function to be minimized.
If `None`, the Mean Squared Error (MSE) loss is used.
Default is `None`.
:raises ValueError: If the problem is not a SpatialProblem.
"""
super().__init__(
model=model,
@@ -102,14 +104,12 @@ class GradientPINN(PINN):
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the GPINN solver based on given
samples and equation.
Computes the physics loss for the physics-informed solver based on the
provided samples and equation.
:param LabelTensor samples: The samples to evaluate the physics loss.
:param EquationInterface equation: The governing equation
representing the physics.
:return: The physics loss calculated based on given
samples and equation.
:param EquationInterface equation: The governing equation.
:return: The computed physics loss.
:rtype: LabelTensor
"""
# classical PINN loss