fix pinn doc

This commit is contained in:
giovanni
2025-03-13 16:50:05 +01:00
committed by Nicola Demo
parent 9a26c94e07
commit 28ef4c823b
8 changed files with 377 additions and 337 deletions

View File

@@ -1,4 +1,4 @@
"""Module for Physics Informed Neural Network."""
"""Module for the Physics-Informed Neural Network solver."""
import torch
@@ -9,14 +9,13 @@ from ...problem import InverseProblem
class PINN(PINNInterface, SingleSolverInterface):
r"""
Physics Informed Neural Network (PINN) solver class.
This class implements Physics Informed Neural
Network solver, using a user specified ``model`` to solve a specific
``problem``. It can be used for solving both forward and inverse problems.
Physics-Informed Neural Network (PINN) solver class.
This class implements Physics-Informed Neural Network solver, using a user
specified ``model`` to solve a specific ``problem``.
It can be used to solve both forward and inverse problems.
The Physics Informed Network aims to find
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
of the differential problem:
The Physics Informed Neural Network solver aims to find the solution
:math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential problem:
.. math::
@@ -26,16 +25,15 @@ class PINN(PINNInterface, SingleSolverInterface):
\mathbf{x}\in\partial\Omega
\end{cases}
minimizing the loss function
minimizing the loss function:
.. math::
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
\frac{1}{N}\sum_{i=1}^N
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i))
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)),
where :math:`\mathcal{L}` is a specific loss function,
default Mean Square Error:
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
.. math::
\mathcal{L}(v) = \| v \|^2_2.
@@ -58,16 +56,20 @@ class PINN(PINNInterface, SingleSolverInterface):
loss=None,
):
"""
:param torch.nn.Module model: The neural network model to use.
:param AbstractProblem problem: The formulation of the problem.
:param torch.optim.Optimizer optimizer: The neural network optimizer to
use; default `None`.
:param torch.optim.LRScheduler scheduler: Learning rate scheduler;
default `None`.
:param WeightingInterface weighting: The weighting schema to use;
default `None`.
:param torch.nn.Module loss: The loss function to be minimized;
default `None`.
Initialization of the :class:`PINN` class.
:param AbstractProblem problem: The problem to be solved.
:param torch.nn.Module model: The neural network model to be used.
:param torch.optim.Optimizer optimizer: The optimizer to be used.
If `None`, the Adam optimizer is used. Default is ``None``.
:param torch.optim.LRScheduler scheduler: Learning rate scheduler.
If `None`, the constant learning rate scheduler is used.
Default is ``None``.
:param WeightingInterface weighting: The weighting schema to be used.
If `None`, no weighting schema is used. Default is ``None``.
:param torch.nn.Module loss: The loss function to be minimized.
If `None`, the Mean Squared Error (MSE) loss is used.
Default is `None`.
"""
super().__init__(
model=model,
@@ -80,14 +82,12 @@ class PINN(PINNInterface, SingleSolverInterface):
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the PINN solver based on given
samples and equation.
Computes the physics loss for the physics-informed solver based on the
provided samples and equation.
:param LabelTensor samples: The samples to evaluate the physics loss.
:param EquationInterface equation: The governing equation
representing the physics.
:return: The physics loss calculated based on given
samples and equation.
:param EquationInterface equation: The governing equation.
:return: The computed physics loss.
:rtype: LabelTensor
"""
residual = self.compute_residual(samples=samples, equation=equation)