fix pinn doc
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
"""Module for Residual-Based Attention PINN."""
|
||||
"""Module for the Residual-Based Attention PINN solver."""
|
||||
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
@@ -9,14 +9,14 @@ from ...utils import check_consistency
|
||||
|
||||
class RBAPINN(PINN):
|
||||
r"""
|
||||
Residual-based Attention PINN (RBAPINN) solver class.
|
||||
This class implements Residual-based Attention Physics Informed Neural
|
||||
Network solver, using a user specified ``model`` to solve a specific
|
||||
``problem``. It can be used for solving both forward and inverse problems.
|
||||
Residual-based Attention Physics-Informed Neural Network (RBAPINN) solver
|
||||
class. This class implements the Residual-based Attention Physics-Informed
|
||||
Neural Network solver, using a user specified ``model`` to solve a specific
|
||||
``problem``. It can be used to solve both forward and inverse problems.
|
||||
|
||||
The Residual-based Attention Physics Informed Neural Network aims to find
|
||||
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
|
||||
of the differential problem:
|
||||
The Residual-based Attention Physics-Informed Neural Network solver aims to
|
||||
find the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a
|
||||
differential problem:
|
||||
|
||||
.. math::
|
||||
|
||||
@@ -26,7 +26,7 @@ class RBAPINN(PINN):
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
minimizing the loss function
|
||||
minimizing the loss function:
|
||||
|
||||
.. math::
|
||||
|
||||
@@ -38,23 +38,23 @@ class RBAPINN(PINN):
|
||||
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
|
||||
\right),
|
||||
|
||||
denoting the weights as
|
||||
denoting the weights as:
|
||||
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
|
||||
:math:`\lambda_{\partial \Omega}^1, \dots,
|
||||
\lambda_{\Omega}^{N_\partial \Omega}`
|
||||
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
|
||||
|
||||
Residual-based Attention Physics Informed Neural Network computes
|
||||
the weights by updating them at every epoch as follows
|
||||
Residual-based Attention Physics-Informed Neural Network updates the weights
|
||||
of the residuals at every epoch as follows:
|
||||
|
||||
.. math::
|
||||
|
||||
\lambda_i^{k+1} \leftarrow \gamma\lambda_i^{k} +
|
||||
\eta\frac{\lvert r_i\rvert}{\max_j \lvert r_j\rvert},
|
||||
|
||||
where :math:`r_i` denotes the residual at point :math:`i`,
|
||||
:math:`\gamma` denotes the decay rate, and :math:`\eta` is
|
||||
the learning rate for the weights' update.
|
||||
where :math:`r_i` denotes the residual at point :math:`i`, :math:`\gamma`
|
||||
denotes the decay rate, and :math:`\eta` is the learning rate for the
|
||||
weights' update.
|
||||
|
||||
.. seealso::
|
||||
**Original reference**: Sokratis J. Anagnostopoulos, Juan D. Toscano,
|
||||
@@ -78,20 +78,25 @@ class RBAPINN(PINN):
|
||||
gamma=0.999,
|
||||
):
|
||||
"""
|
||||
:param torch.nn.Module model: The neural network model to use.
|
||||
:param AbstractProblem problem: The formulation of the problem.
|
||||
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
||||
use; default `None`.
|
||||
:param torch.optim.LRScheduler scheduler: Learning rate scheduler;
|
||||
default `None`.
|
||||
:param WeightingInterface weighting: The weighting schema to use;
|
||||
default `None`.
|
||||
:param torch.nn.Module loss: The loss function to be minimized;
|
||||
default `None`.
|
||||
Initialization of the :class:`RBAPINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param torch.optim.Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the Adam optimizer is used. Default is ``None``.
|
||||
:param torch.optim.LRScheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the constant learning rate scheduler is used.
|
||||
Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the Mean Squared Error (MSE) loss is used.
|
||||
Default is `None`.
|
||||
:param float | int eta: The learning rate for the weights of the
|
||||
residual; default 0.001.
|
||||
residuals. Default is ``0.001``.
|
||||
:param float gamma: The decay parameter in the update of the weights
|
||||
of the residual. Must be between 0 and 1; default 0.999.
|
||||
of the residuals. Must be between ``0`` and ``1``.
|
||||
Default is ``0.999``.
|
||||
"""
|
||||
super().__init__(
|
||||
model=model,
|
||||
@@ -122,6 +127,11 @@ class RBAPINN(PINN):
|
||||
|
||||
# for now RBAPINN is implemented only for batch_size = None
|
||||
def on_train_start(self):
|
||||
"""
|
||||
Hook method called at the beginning of training.
|
||||
|
||||
:raises NotImplementedError: If the batch size is not ``None``.
|
||||
"""
|
||||
if self.trainer.batch_size is not None:
|
||||
raise NotImplementedError(
|
||||
"RBAPINN only works with full batch "
|
||||
@@ -132,11 +142,11 @@ class RBAPINN(PINN):
|
||||
|
||||
def _vect_to_scalar(self, loss_value):
|
||||
"""
|
||||
Elaboration of the pointwise loss.
|
||||
Computation of the scalar loss.
|
||||
|
||||
:param LabelTensor loss_value: the matrix of pointwise loss.
|
||||
|
||||
:return: the scalar loss.
|
||||
:param LabelTensor loss_value: the tensor of pointwise losses.
|
||||
:raises RuntimeError: If the loss reduction is not ``mean`` or ``sum``.
|
||||
:return: The computed scalar loss.
|
||||
:rtype LabelTensor
|
||||
"""
|
||||
if self.loss.reduction == "mean":
|
||||
@@ -152,14 +162,12 @@ class RBAPINN(PINN):
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the residual-based attention PINN
|
||||
solver based on given samples and equation.
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation
|
||||
representing the physics.
|
||||
:return: The physics loss calculated based on given
|
||||
samples and equation.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
|
||||
Reference in New Issue
Block a user