Update Tutorials (#544)

* update tutorials
* tutorial guidelines
* doc
This commit is contained in:
Dario Coscia
2025-04-23 16:19:07 +02:00
parent 7e403acf58
commit 29b14ee9b6
45 changed files with 6279 additions and 6726 deletions

View File

@@ -1,35 +1,43 @@
PINA Tutorials
======================
🚀 Welcome to the PINA Tutorials!
==================================
In this folder we collect useful tutorials in order to understand the principles and the potential of **PINA**.
In this folder we collect useful tutorials in order to understand the principles and the potential of **PINA**.
Whether you're just getting started or looking to deepen your understanding, these resources are here to guide you.
Getting started with PINA
-------------------------
- `Introduction to PINA for Physics Informed Neural Networks training <tutorial1/tutorial.html>`_
- `Introductory Tutorial: A Beginner's Guide to PINA <tutorial17/tutorial.html>`_
- `How to build a Problem in PINA <tutorial16/tutorial.html>`_
- `Introduction to Solver classes <tutorial18/tutorial.html>`_
- `Introduction to Trainer class <tutorial11/tutorial.html>`_
- `Data structure for SciML: Tensor, LabelTensor, Data and Graph <tutorial19/tutorial.html>`_
- `Building geometries with DomainInterface class <tutorial6/tutorial.html>`_
- `Introduction to PINA Equation class <tutorial12/tutorial.html>`_
- `PINA and PyTorch Lightning, training tips and visualizations <tutorial11/tutorial.html>`_
- `Building custom geometries with PINA Location class <tutorial6/tutorial.html>`_
Physics Informed Neural Networks
--------------------------------
- `Two dimensional Poisson problem using Extra Features Learning <tutorial2/tutorial.html>`_
- `Two dimensional Wave problem with hard constraint <tutorial3/tutorial.html>`_
- `Resolution of a 2D Poisson inverse problem <tutorial7/tutorial.html>`_
- `Periodic Boundary Conditions for Helmotz Equation <tutorial9/tutorial.html>`_
- `Multiscale PDE learning with Fourier Feature Network <tutorial13/tutorial.html>`_
- `Introductory Tutorial: Physics Informed Neural Networks with PINA <tutorial1/tutorial.html>`_
- `Enhancing PINNs with Extra Features to solve the Poisson Problem <tutorial2/tutorial.html>`_
- `Applying Hard Constraints in PINNs to solve the Wave Problem <tutorial3/tutorial.html>`_
- `Applying Periodic Boundary Conditions in PINNs to solve the Helmotz Problem <tutorial9/tutorial.html>`_
- `Inverse Problem Solving with Physics-Informed Neural Network <tutorial7/tutorial.html>`_
- `Learning Multiscale PDEs Using Fourier Feature Networks <tutorial13/tutorial.html>`_
- `Learning Bifurcating PDE Solutions with Physics-Informed Deep Ensembles <tutorial14/tutorial.html>`_
Neural Operator Learning
------------------------
- `Two dimensional Darcy flow using the Fourier Neural Operator <tutorial5/tutorial.html>`_
- `Time dependent Kuramoto Sivashinsky equation using the Averaging Neural Operator <tutorial10/tutorial.html>`_
- `Introductory Tutorial: Neural Operator Learning with PINA <tutorial21/tutorial.html>`_
- `Modeling 2D Darcy Flow with the Fourier Neural Operator <tutorial5/tutorial.html>`_
- `Solving the Kuramoto-Sivashinsky Equation with Averaging Neural Operator <tutorial10/tutorial.html>`_
Supervised Learning
-------------------
- `Unstructured convolutional autoencoder via continuous convolution <tutorial4/tutorial.html>`_
- `POD-RBF and POD-NN for reduced order modeling <tutorial8/tutorial.html>`_
- `Introductory Tutorial: Supervised Learning with PINA <tutorial20/tutorial.html>`_
- `Chemical Properties Prediction with Graph Neural Networks <tutorial25/tutorial.html>`_
- `Unstructured Convolutional Autoencoders with Continuous Convolution <tutorial4/tutorial.html>`_
- `Reduced Order Modeling with POD-RBF and POD-NN Approaches for Fluid Dynamics <tutorial8/tutorial.html>`_