149
tutorials/tutorial12/tutorial.ipynb
vendored
149
tutorials/tutorial12/tutorial.ipynb
vendored
@@ -4,50 +4,37 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Tutorial: The `Equation` Class\n",
|
||||
"# Tutorial: Introduction to PINA `Equation` class\n",
|
||||
"\n",
|
||||
"[](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial12/tutorial.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"In this tutorial, we will show how to use the `Equation` Class in PINA. Specifically, we will see how use the Class and its inherited classes to enforce residuals minimization in PINNs."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Example: The Burgers 1D equation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"[](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial12/tutorial.ipynb)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"In this tutorial, we will explore how to use the `Equation` class in **PINA**. We will focus on how to leverage this class, along with its inherited subclasses, to enforce residual minimization in **Physics-Informed Neural Networks (PINNs)**.\n",
|
||||
"\n",
|
||||
"By the end of this guide, you'll understand how to integrate physical laws and constraints directly into your model training, ensuring that the solution adheres to the underlying differential equations.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"## Example: The Burgers 1D equation\n",
|
||||
"We will start implementing the viscous Burgers 1D problem Class, described as follows:\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"$$\n",
|
||||
"\\begin{equation}\n",
|
||||
"\\begin{cases}\n",
|
||||
"\\frac{\\partial u}{\\partial t} + u \\frac{\\partial u}{\\partial x} &= \\nu \\frac{\\partial^2 u}{ \\partial x^2}, \\quad x\\in(0,1), \\quad t>0\\\\\n",
|
||||
"u(x,0) &= -\\sin (\\pi x)\\\\\n",
|
||||
"u(x,t) &= 0 \\quad x = \\pm 1\\\\\n",
|
||||
"u(x,0) &= -\\sin (\\pi x), \\quad x\\in(0,1)\\\\\n",
|
||||
"u(x,t) &= 0, \\quad x = \\pm 1, \\quad t>0\\\\\n",
|
||||
"\\end{cases}\n",
|
||||
"\\end{equation}\n",
|
||||
"$$\n",
|
||||
"\n",
|
||||
"where we set $ \\nu = \\frac{0.01}{\\pi}$.\n",
|
||||
"\n",
|
||||
"In the class that models this problem we will see in action the `Equation` class and one of its inherited classes, the `FixedValue` class. "
|
||||
"In the class that models this problem we will see in action the `Equation` class and one of its inherited classes, the `FixedValue` class."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -59,7 +46,7 @@
|
||||
"except:\n",
|
||||
" IN_COLAB = False\n",
|
||||
"if IN_COLAB:\n",
|
||||
" !pip install \"pina-mathlab\"\n",
|
||||
" !pip install \"pina-mathlab[tutorial]\"\n",
|
||||
"\n",
|
||||
"import torch\n",
|
||||
"\n",
|
||||
@@ -68,7 +55,14 @@
|
||||
"from pina.problem import SpatialProblem, TimeDependentProblem\n",
|
||||
"from pina.equation import Equation, FixedValue\n",
|
||||
"from pina.domain import CartesianDomain\n",
|
||||
"from pina.operator import grad, laplacian"
|
||||
"from pina.operator import grad, fast_grad, laplacian"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's begin by defining the Burgers equation and its initial condition as Python functions. These functions will take the model's `input` (spatial and temporal coordinates) and `output` (predicted solution) as arguments. The goal is to compute the residuals for the Burgers equation, which we will minimize during training."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -79,7 +73,7 @@
|
||||
"source": [
|
||||
"# define the burger equation\n",
|
||||
"def burger_equation(input_, output_):\n",
|
||||
" du = grad(output_, input_)\n",
|
||||
" du = fast_grad(output_, input_, components=[\"u\"], d=[\"x\"])\n",
|
||||
" ddu = grad(du, input_, components=[\"dudx\"])\n",
|
||||
" return (\n",
|
||||
" du.extract([\"dudt\"])\n",
|
||||
@@ -91,9 +85,32 @@
|
||||
"# define initial condition\n",
|
||||
"def initial_condition(input_, output_):\n",
|
||||
" u_expected = -torch.sin(torch.pi * input_.extract([\"x\"]))\n",
|
||||
" return output_.extract([\"u\"]) - u_expected\n",
|
||||
" return output_.extract([\"u\"]) - u_expected"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Above we use the `grad` operator from `pina.operator` to compute the gradient. In PINA each differential operator takes the following inputs:\n",
|
||||
"- `output_`: A tensor on which the operator is applied.\n",
|
||||
"- `input_`: A tensor with respect to which the operator is computed.\n",
|
||||
"- `components`: The names of the output variables for which the operator is evaluated.\n",
|
||||
"- `d`: The names of the variables with respect to which the operator is computed.\n",
|
||||
"\n",
|
||||
"Each differential operator has its **fast** version, which performs no internal checks on input and output tensors. For these methods, the user is always required to specify both ``components`` and ``d`` as lists of strings.\n",
|
||||
"\n",
|
||||
"Let's define now the problem!\n",
|
||||
"\n",
|
||||
"> **👉 Do you want to learn more on Problems? Check the dedicated [tutorial](https://mathlab.github.io/PINA/tutorial16/tutorial.html) to learn how to build a Problem from scratch.**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Burgers1D(TimeDependentProblem, SpatialProblem):\n",
|
||||
"\n",
|
||||
" # assign output/ spatial and temporal variables\n",
|
||||
@@ -128,36 +145,29 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"The `Equation` class takes as input a function (in this case it happens twice, with `initial_condition` and `burger_equation`) which computes a residual of an equation, such as a PDE. In a problem class such as the one above, the `Equation` class with such a given input is passed as a parameter in the specified `Condition`. \n",
|
||||
"\n",
|
||||
"The `FixedValue` class takes as input a value of same dimensions of the output functions; this class can be used to enforce a fixed value for a specific condition, e.g. Dirichlet boundary conditions, as it happens for instance in our example.\n",
|
||||
"The `FixedValue` class takes as input a value of the same dimensions as the output functions. This class can be used to enforce a fixed value for a specific condition, such as Dirichlet boundary conditions, as demonstrated in our example.\n",
|
||||
"\n",
|
||||
"Once the equations are set as above in the problem conditions, the PINN solver will aim to minimize the residuals described in each equation in the training phase. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Available classes of equations include also:\n",
|
||||
"- `FixedGradient` and `FixedFlux`: they work analogously to `FixedValue` class, where we can require a constant value to be enforced, respectively, on the gradient of the solution or the divergence of the solution;\n",
|
||||
"- `Laplace`: it can be used to enforce the laplacian of the solution to be zero;\n",
|
||||
"- `SystemEquation`: we can enforce multiple conditions on the same subdomain through this class, passing a list of residual equations defined in the problem.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Defining a new Equation class"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"`Equation` classes can be also inherited to define a new class. As example, we can see how to rewrite the above problem introducing a new class `Burgers1D`; during the class call, we can pass the viscosity parameter $\\nu$:"
|
||||
"Once the equations are set as above in the problem conditions, the PINN solver will aim to minimize the residuals described in each equation during the training phase. \n",
|
||||
"\n",
|
||||
"### Available classes of equations:\n",
|
||||
"- `FixedGradient` and `FixedFlux`: These work analogously to the `FixedValue` class, where we can enforce a constant value on the gradient or the divergence of the solution, respectively.\n",
|
||||
"- `Laplace`: This class can be used to enforce that the Laplacian of the solution is zero.\n",
|
||||
"- `SystemEquation`: This class allows you to enforce multiple conditions on the same subdomain by passing a list of residual equations defined in the problem.\n",
|
||||
"\n",
|
||||
"## Defining a new Equation class\n",
|
||||
"`Equation` classes can also be inherited to define a new class. For example, we can define a new class `Burgers1D` to represent the Burgers equation. During the class call, we can pass the viscosity parameter $\\nu$:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"class Burgers1D(Equation):\n",
|
||||
" def __init__(self, nu):\n",
|
||||
" self.nu = nu\n",
|
||||
"\n",
|
||||
" def equation(self, input_, output_):\n",
|
||||
" ...\n",
|
||||
"```\n",
|
||||
"In this case, the `Burgers1D` class will inherit from the `Equation` class and compute the residual of the Burgers equation. The viscosity parameter $\\nu$ is passed when instantiating the class and used in the residual calculation. Let's see it in more details:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -239,17 +249,18 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# What's next?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Congratulations on completing the `Equation` class tutorial of **PINA**! As we have seen, you can build new classes that inherit `Equation` to store more complex equations, as the Burgers 1D equation, only requiring to pass the characteristic coefficients of the problem. \n",
|
||||
"From now on, you can:\n",
|
||||
"- define additional complex equation classes (e.g. `SchrodingerEquation`, `NavierStokeEquation`..)\n",
|
||||
"- define more `FixedOperator` (e.g. `FixedCurl`)"
|
||||
"## What's Next?\n",
|
||||
"\n",
|
||||
"Congratulations on completing the `Equation` class tutorial of **PINA**! As we've seen, you can build new classes that inherit from `Equation` to store more complex equations, such as the 1D Burgers equation, by simply passing the characteristic coefficients of the problem.\n",
|
||||
"\n",
|
||||
"From here, you can:\n",
|
||||
"\n",
|
||||
"- **Define Additional Complex Equation Classes**: Create your own equation classes, such as `SchrodingerEquation`, `NavierStokesEquation`, etc.\n",
|
||||
"- **Define More `FixedOperator` Classes**: Implement operators like `FixedCurl`, `FixedDivergence`, and others for more advanced simulations.\n",
|
||||
"- **Integrate Custom Equations and Operators**: Combine your custom equations and operators into larger systems for more complex simulations.\n",
|
||||
"- **and many more!**: Explore for example different residual minimization techniques to improve the performance and accuracy of your models.\n",
|
||||
"\n",
|
||||
"For more resources and tutorials, check out the [PINA Documentation](https://mathlab.github.io/PINA/)."
|
||||
]
|
||||
}
|
||||
],
|
||||
|
||||
188
tutorials/tutorial12/tutorial.py
vendored
188
tutorials/tutorial12/tutorial.py
vendored
@@ -1,188 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# # Tutorial: The `Equation` Class
|
||||
#
|
||||
# [](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial12/tutorial.ipynb)
|
||||
|
||||
# In this tutorial, we will show how to use the `Equation` Class in PINA. Specifically, we will see how use the Class and its inherited classes to enforce residuals minimization in PINNs.
|
||||
|
||||
# # Example: The Burgers 1D equation
|
||||
|
||||
# We will start implementing the viscous Burgers 1D problem Class, described as follows:
|
||||
#
|
||||
#
|
||||
# $$
|
||||
# \begin{equation}
|
||||
# \begin{cases}
|
||||
# \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} &= \nu \frac{\partial^2 u}{ \partial x^2}, \quad x\in(0,1), \quad t>0\\
|
||||
# u(x,0) &= -\sin (\pi x)\\
|
||||
# u(x,t) &= 0 \quad x = \pm 1\\
|
||||
# \end{cases}
|
||||
# \end{equation}
|
||||
# $$
|
||||
#
|
||||
# where we set $ \nu = \frac{0.01}{\pi}$.
|
||||
#
|
||||
# In the class that models this problem we will see in action the `Equation` class and one of its inherited classes, the `FixedValue` class.
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
## routine needed to run the notebook on Google Colab
|
||||
try:
|
||||
import google.colab
|
||||
|
||||
IN_COLAB = True
|
||||
except:
|
||||
IN_COLAB = False
|
||||
if IN_COLAB:
|
||||
get_ipython().system('pip install "pina-mathlab"')
|
||||
|
||||
import torch
|
||||
|
||||
# useful imports
|
||||
from pina import Condition
|
||||
from pina.problem import SpatialProblem, TimeDependentProblem
|
||||
from pina.equation import Equation, FixedValue
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.operator import grad, laplacian
|
||||
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
# define the burger equation
|
||||
def burger_equation(input_, output_):
|
||||
du = grad(output_, input_)
|
||||
ddu = grad(du, input_, components=["dudx"])
|
||||
return (
|
||||
du.extract(["dudt"])
|
||||
+ output_.extract(["u"]) * du.extract(["dudx"])
|
||||
- (0.01 / torch.pi) * ddu.extract(["ddudxdx"])
|
||||
)
|
||||
|
||||
|
||||
# define initial condition
|
||||
def initial_condition(input_, output_):
|
||||
u_expected = -torch.sin(torch.pi * input_.extract(["x"]))
|
||||
return output_.extract(["u"]) - u_expected
|
||||
|
||||
|
||||
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
||||
|
||||
# assign output/ spatial and temporal variables
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [-1, 1]})
|
||||
temporal_domain = CartesianDomain({"t": [0, 1]})
|
||||
|
||||
domains = {
|
||||
"bound_cond1": CartesianDomain({"x": -1, "t": [0, 1]}),
|
||||
"bound_cond2": CartesianDomain({"x": 1, "t": [0, 1]}),
|
||||
"time_cond": CartesianDomain({"x": [-1, 1], "t": 0}),
|
||||
"phys_cond": CartesianDomain({"x": [-1, 1], "t": [0, 1]}),
|
||||
}
|
||||
# problem condition statement
|
||||
conditions = {
|
||||
"bound_cond1": Condition(
|
||||
domain="bound_cond1", equation=FixedValue(0.0)
|
||||
),
|
||||
"bound_cond2": Condition(
|
||||
domain="bound_cond2", equation=FixedValue(0.0)
|
||||
),
|
||||
"time_cond": Condition(
|
||||
domain="time_cond", equation=Equation(initial_condition)
|
||||
),
|
||||
"phys_cond": Condition(
|
||||
domain="phys_cond", equation=Equation(burger_equation)
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
#
|
||||
# The `Equation` class takes as input a function (in this case it happens twice, with `initial_condition` and `burger_equation`) which computes a residual of an equation, such as a PDE. In a problem class such as the one above, the `Equation` class with such a given input is passed as a parameter in the specified `Condition`.
|
||||
#
|
||||
# The `FixedValue` class takes as input a value of same dimensions of the output functions; this class can be used to enforce a fixed value for a specific condition, e.g. Dirichlet boundary conditions, as it happens for instance in our example.
|
||||
#
|
||||
# Once the equations are set as above in the problem conditions, the PINN solver will aim to minimize the residuals described in each equation in the training phase.
|
||||
|
||||
# Available classes of equations include also:
|
||||
# - `FixedGradient` and `FixedFlux`: they work analogously to `FixedValue` class, where we can require a constant value to be enforced, respectively, on the gradient of the solution or the divergence of the solution;
|
||||
# - `Laplace`: it can be used to enforce the laplacian of the solution to be zero;
|
||||
# - `SystemEquation`: we can enforce multiple conditions on the same subdomain through this class, passing a list of residual equations defined in the problem.
|
||||
#
|
||||
|
||||
# # Defining a new Equation class
|
||||
|
||||
# `Equation` classes can be also inherited to define a new class. As example, we can see how to rewrite the above problem introducing a new class `Burgers1D`; during the class call, we can pass the viscosity parameter $\nu$:
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
class Burgers1DEquation(Equation):
|
||||
|
||||
def __init__(self, nu=0.0):
|
||||
"""
|
||||
Burgers1D class. This class can be
|
||||
used to enforce the solution u to solve the viscous Burgers 1D Equation.
|
||||
|
||||
:param torch.float32 nu: the viscosity coefficient. Default value is set to 0.
|
||||
"""
|
||||
self.nu = nu
|
||||
|
||||
def equation(input_, output_):
|
||||
return (
|
||||
grad(output_, input_, d="t")
|
||||
+ output_ * grad(output_, input_, d="x")
|
||||
- self.nu * laplacian(output_, input_, d="x")
|
||||
)
|
||||
|
||||
super().__init__(equation)
|
||||
|
||||
|
||||
# Now we can just pass the above class as input for the last condition, setting $\nu= \frac{0.01}{\pi}$:
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
class Burgers1D(TimeDependentProblem, SpatialProblem):
|
||||
|
||||
# define initial condition
|
||||
def initial_condition(input_, output_):
|
||||
u_expected = -torch.sin(torch.pi * input_.extract(["x"]))
|
||||
return output_.extract(["u"]) - u_expected
|
||||
|
||||
# assign output/ spatial and temporal variables
|
||||
output_variables = ["u"]
|
||||
spatial_domain = CartesianDomain({"x": [-1, 1]})
|
||||
temporal_domain = CartesianDomain({"t": [0, 1]})
|
||||
|
||||
domains = {
|
||||
"bound_cond1": CartesianDomain({"x": -1, "t": [0, 1]}),
|
||||
"bound_cond2": CartesianDomain({"x": 1, "t": [0, 1]}),
|
||||
"time_cond": CartesianDomain({"x": [-1, 1], "t": 0}),
|
||||
"phys_cond": CartesianDomain({"x": [-1, 1], "t": [0, 1]}),
|
||||
}
|
||||
# problem condition statement
|
||||
conditions = {
|
||||
"bound_cond1": Condition(
|
||||
domain="bound_cond1", equation=FixedValue(0.0)
|
||||
),
|
||||
"bound_cond2": Condition(
|
||||
domain="bound_cond2", equation=FixedValue(0.0)
|
||||
),
|
||||
"time_cond": Condition(
|
||||
domain="time_cond", equation=Equation(initial_condition)
|
||||
),
|
||||
"phys_cond": Condition(
|
||||
domain="phys_cond", equation=Burgers1DEquation(nu=0.01 / torch.pi)
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
# # What's next?
|
||||
|
||||
# Congratulations on completing the `Equation` class tutorial of **PINA**! As we have seen, you can build new classes that inherit `Equation` to store more complex equations, as the Burgers 1D equation, only requiring to pass the characteristic coefficients of the problem.
|
||||
# From now on, you can:
|
||||
# - define additional complex equation classes (e.g. `SchrodingerEquation`, `NavierStokeEquation`..)
|
||||
# - define more `FixedOperator` (e.g. `FixedCurl`)
|
||||
Reference in New Issue
Block a user