Update paper.md (#134)
* update paper.md and paper.bib * correct modulus reference --------- Co-authored-by: Anna Ivagnes <s274001@studenti.polito.it> Co-authored-by: Dario Coscia <93731561+dario-coscia@users.noreply.github.com>
This commit is contained in:
@@ -10,6 +10,13 @@
|
||||
publisher={Now Publishers, Inc.}
|
||||
}
|
||||
|
||||
@misc{modulussym,
|
||||
title = {{NVIDIA Modulus}},
|
||||
howpublished = "\url{https://github.com/NVIDIA/modulus}",
|
||||
year = {2023},
|
||||
note = "[Online; accessed 27-April-2023]"
|
||||
}
|
||||
|
||||
@article{Wang_2005,
|
||||
doi = {10.1088/0964-1726/14/1/011},
|
||||
url = {https://dx.doi.org/10.1088/0964-1726/14/1/011},
|
||||
@@ -40,19 +47,19 @@ abstract = {We introduce physics-informed neural networks – neural networks th
|
||||
|
||||
@misc{pinns,
|
||||
doi = {10.48550/ARXIV.2201.05624},
|
||||
|
||||
|
||||
url = {https://arxiv.org/abs/2201.05624},
|
||||
|
||||
|
||||
author = {Cuomo, Salvatore and di Cola, Vincenzo Schiano and Giampaolo, Fabio and Rozza, Gianluigi and Raissi, Maziar and Piccialli, Francesco},
|
||||
|
||||
|
||||
keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Numerical Analysis (math.NA), Data Analysis, Statistics and Probability (physics.data-an), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Mathematics, FOS: Mathematics, FOS: Physical sciences, FOS: Physical sciences},
|
||||
|
||||
|
||||
title = {Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next},
|
||||
|
||||
|
||||
publisher = {arXiv},
|
||||
|
||||
|
||||
year = {2022},
|
||||
|
||||
|
||||
copyright = {arXiv.org perpetual, non-exclusive license}
|
||||
}
|
||||
|
||||
@@ -138,41 +145,41 @@ abstract = {In this work we investigate the possibility of using physics-informe
|
||||
|
||||
@misc{Markidis,
|
||||
doi = {10.48550/ARXIV.2103.09655},
|
||||
|
||||
|
||||
url = {https://arxiv.org/abs/2103.09655},
|
||||
|
||||
|
||||
author = {Markidis, Stefano},
|
||||
|
||||
|
||||
keywords = {Numerical Analysis (math.NA), Distributed, Parallel, and Cluster Computing (cs.DC), Computational Physics (physics.comp-ph), FOS: Mathematics, FOS: Mathematics, FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Physical sciences, FOS: Physical sciences},
|
||||
|
||||
|
||||
title = {The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?},
|
||||
|
||||
|
||||
publisher = {arXiv},
|
||||
|
||||
|
||||
year = {2021},
|
||||
|
||||
|
||||
copyright = {arXiv.org perpetual, non-exclusive license}
|
||||
}
|
||||
|
||||
@article{Kharazmi_2021,
|
||||
doi = {10.1016/j.cma.2020.113547},
|
||||
|
||||
|
||||
url = {https://doi.org/10.1016%2Fj.cma.2020.113547},
|
||||
|
||||
|
||||
year = 2021,
|
||||
month = {feb},
|
||||
|
||||
|
||||
publisher = {Elsevier {BV}
|
||||
},
|
||||
|
||||
|
||||
volume = {374},
|
||||
|
||||
|
||||
pages = {113547},
|
||||
|
||||
|
||||
author = {Ehsan Kharazmi and Zhongqiang Zhang and George E.M. Karniadakis},
|
||||
|
||||
|
||||
title = {hp-{VPINNs}: Variational physics-informed neural networks with domain decomposition},
|
||||
|
||||
|
||||
journal = {Computer Methods in Applied Mechanics and Engineering}
|
||||
}
|
||||
|
||||
@@ -192,54 +199,54 @@ abstract = {Fatigue life of a wind turbine main bearing is drastically affected
|
||||
|
||||
@misc{strazdemo,
|
||||
doi = {10.48550/ARXIV.2110.13530},
|
||||
|
||||
|
||||
url = {https://arxiv.org/abs/2110.13530},
|
||||
|
||||
|
||||
author = {Demo, Nicola and Strazzullo, Maria and Rozza, Gianluigi},
|
||||
|
||||
|
||||
keywords = {Machine Learning (cs.LG), Numerical Analysis (math.NA), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Mathematics, FOS: Mathematics},
|
||||
|
||||
|
||||
title = {An extended physics informed neural network for preliminary analysis of parametric optimal control problems},
|
||||
|
||||
|
||||
publisher = {arXiv},
|
||||
|
||||
|
||||
year = {2021},
|
||||
|
||||
|
||||
copyright = {arXiv.org perpetual, non-exclusive license}
|
||||
}
|
||||
|
||||
@misc{adam,
|
||||
doi = {10.48550/ARXIV.1412.6980},
|
||||
|
||||
|
||||
url = {https://arxiv.org/abs/1412.6980},
|
||||
|
||||
|
||||
author = {Kingma, Diederik P. and Ba, Jimmy},
|
||||
|
||||
|
||||
keywords = {Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
||||
|
||||
|
||||
title = {Adam: A Method for Stochastic Optimization},
|
||||
|
||||
|
||||
publisher = {arXiv},
|
||||
|
||||
|
||||
year = {2014},
|
||||
|
||||
|
||||
copyright = {arXiv.org perpetual, non-exclusive license}
|
||||
}
|
||||
|
||||
@misc{ccnn,
|
||||
doi = {10.48550/ARXIV.2210.13416},
|
||||
|
||||
|
||||
url = {https://arxiv.org/abs/2210.13416},
|
||||
|
||||
|
||||
author = {Coscia, Dario and Meneghetti, Laura and Demo, Nicola and Stabile, Giovanni and Rozza, Gianluigi},
|
||||
|
||||
|
||||
keywords = {Machine Learning (cs.LG), Numerical Analysis (math.NA), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Mathematics, FOS: Mathematics},
|
||||
|
||||
|
||||
title = {A Continuous Convolutional Trainable Filter for Modelling Unstructured Data},
|
||||
|
||||
|
||||
publisher = {arXiv},
|
||||
|
||||
|
||||
year = {2022},
|
||||
|
||||
|
||||
copyright = {Creative Commons Attribution 4.0 International}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user