added rba-pinn (#308)
* added rba-pinn * changes to loss logger * tests * doc --------- Co-authored-by: Monthly Tag bot <mtbot@noreply.github.com> Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
This commit is contained in:
@@ -41,6 +41,7 @@ Solvers
|
||||
CausalPINN <solvers/causalpinn.rst>
|
||||
CompetitivePINN <solvers/competitivepinn.rst>
|
||||
SAPINN <solvers/sapinn.rst>
|
||||
RBAPINN <solvers/rba_pinn.rst>
|
||||
Supervised solver <solvers/supervised.rst>
|
||||
ReducedOrderModelSolver <solvers/rom.rst>
|
||||
GAROM <solvers/garom.rst>
|
||||
|
||||
7
docs/source/_rst/solvers/rba_pinn.rst
Normal file
7
docs/source/_rst/solvers/rba_pinn.rst
Normal file
@@ -0,0 +1,7 @@
|
||||
RBAPINN
|
||||
========
|
||||
.. currentmodule:: pina.solvers.pinns.rbapinn
|
||||
|
||||
.. autoclass:: RBAPINN
|
||||
:members:
|
||||
:show-inheritance:
|
||||
@@ -6,6 +6,7 @@ __all__ = [
|
||||
"CausalPINN",
|
||||
"CompetitivePINN",
|
||||
"SAPINN",
|
||||
"RBAPINN",
|
||||
"SupervisedSolver",
|
||||
"ReducedOrderModelSolver",
|
||||
"GAROM",
|
||||
|
||||
@@ -5,6 +5,7 @@ __all__ = [
|
||||
"CausalPINN",
|
||||
"CompetitivePINN",
|
||||
"SAPINN",
|
||||
"RBAPINN",
|
||||
]
|
||||
|
||||
from .basepinn import PINNInterface
|
||||
@@ -13,3 +14,4 @@ from .gpinn import GPINN
|
||||
from .causalpinn import CausalPINN
|
||||
from .competitive_pinn import CompetitivePINN
|
||||
from .sapinn import SAPINN
|
||||
from .rbapinn import RBAPINN
|
||||
|
||||
170
pina/solvers/pinns/rbapinn.py
Normal file
170
pina/solvers/pinns/rbapinn.py
Normal file
@@ -0,0 +1,170 @@
|
||||
""" Module for RBAPINN. """
|
||||
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import ConstantLR
|
||||
from .pinn import PINN
|
||||
from ...utils import check_consistency
|
||||
|
||||
|
||||
class RBAPINN(PINN):
|
||||
r"""
|
||||
Residual-based Attention PINN (RBAPINN) solver class.
|
||||
This class implements Residual-based Attention Physics Informed Neural
|
||||
Network solvers, using a user specified ``model`` to solve a specific
|
||||
``problem``. It can be used for solving both forward and inverse problems.
|
||||
|
||||
The Residual-based Attention Physics Informed Neural Network aims to find
|
||||
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
|
||||
of the differential problem:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
minimizing the loss function
|
||||
|
||||
.. math::
|
||||
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega}
|
||||
\lambda_{\Omega}^{i} \mathcal{L} \left( \mathcal{A}
|
||||
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
|
||||
\sum_{i=1}^{N_{\partial\Omega}}
|
||||
\lambda_{\partial\Omega}^{i} \mathcal{L}
|
||||
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
|
||||
\right),
|
||||
|
||||
denoting the weights as
|
||||
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
|
||||
:math:`\lambda_{\partial \Omega}^1, \dots,
|
||||
\lambda_{\Omega}^{N_\partial \Omega}`
|
||||
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
|
||||
|
||||
Residual-based Attention Physics Informed Neural Network computes
|
||||
the weights by updating them at every epoch as follows
|
||||
|
||||
.. math::
|
||||
|
||||
\lambda_i^{k+1} \leftarrow \gamma\lambda_i^{k} +
|
||||
\eta\frac{\lvert r_i\rvert}{\max_j \lvert r_j\rvert},
|
||||
|
||||
where :math:`r_i` denotes the residual at point :math:`i`,
|
||||
:math:`\gamma` denotes the decay rate, and :math:`\eta` is
|
||||
the learning rate for the weights' update.
|
||||
|
||||
.. seealso::
|
||||
**Original reference**: Sokratis J. Anagnostopoulos, Juan D. Toscano,
|
||||
Nikolaos Stergiopulos, and George E. Karniadakis.
|
||||
"Residual-based attention and connection to information
|
||||
bottleneck theory in PINNs".
|
||||
Computer Methods in Applied Mechanics and Engineering 421 (2024): 116805
|
||||
DOI: `10.1016/
|
||||
j.cma.2024.116805 <https://doi.org/10.1016/j.cma.2024.116805>`_.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
extra_features=None,
|
||||
loss=torch.nn.MSELoss(),
|
||||
optimizer=torch.optim.Adam,
|
||||
optimizer_kwargs={"lr": 0.001},
|
||||
scheduler=ConstantLR,
|
||||
scheduler_kwargs={"factor": 1, "total_iters": 0},
|
||||
eta=0.001,
|
||||
gamma=0.999,
|
||||
):
|
||||
"""
|
||||
:param AbstractProblem problem: The formulation of the problem.
|
||||
:param torch.nn.Module model: The neural network model to use.
|
||||
:param torch.nn.Module extra_features: The additional input
|
||||
features to use as augmented input.
|
||||
:param torch.nn.Module loss: The loss function used as minimizer,
|
||||
default :class:`torch.nn.MSELoss`.
|
||||
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
||||
use; default is :class:`torch.optim.Adam`.
|
||||
:param dict optimizer_kwargs: Optimizer constructor keyword args.
|
||||
:param torch.optim.LRScheduler scheduler: Learning
|
||||
rate scheduler.
|
||||
:param dict scheduler_kwargs: LR scheduler constructor keyword args.
|
||||
:param float | int eta: The learning rate for the
|
||||
weights of the residual.
|
||||
:param float gamma: The decay parameter in the update of the weights
|
||||
of the residual.
|
||||
"""
|
||||
super().__init__(
|
||||
problem=problem,
|
||||
model=model,
|
||||
extra_features=extra_features,
|
||||
loss=loss,
|
||||
optimizer=optimizer,
|
||||
optimizer_kwargs=optimizer_kwargs,
|
||||
scheduler=scheduler,
|
||||
scheduler_kwargs=scheduler_kwargs,
|
||||
)
|
||||
|
||||
# check consistency
|
||||
check_consistency(eta, (float, int))
|
||||
check_consistency(gamma, float)
|
||||
self.eta = eta
|
||||
self.gamma = gamma
|
||||
|
||||
# initialize weights
|
||||
self.weights = {}
|
||||
for condition_name in problem.conditions:
|
||||
self.weights[condition_name] = 0
|
||||
|
||||
# define vectorial loss
|
||||
self._vectorial_loss = deepcopy(loss)
|
||||
self._vectorial_loss.reduction = "none"
|
||||
|
||||
def _vect_to_scalar(self, loss_value):
|
||||
"""
|
||||
Elaboration of the pointwise loss.
|
||||
|
||||
:param LabelTensor loss_value: the matrix of pointwise loss.
|
||||
|
||||
:return: the scalar loss.
|
||||
:rtype LabelTensor
|
||||
"""
|
||||
if self.loss.reduction == "mean":
|
||||
ret = torch.mean(loss_value)
|
||||
elif self.loss.reduction == "sum":
|
||||
ret = torch.sum(loss_value)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
f"Invalid reduction, got {self.loss.reduction} "
|
||||
"but expected mean or sum."
|
||||
)
|
||||
return ret
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the residual-based attention PINN
|
||||
solver based on given samples and equation.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation
|
||||
representing the physics.
|
||||
:return: The physics loss calculated based on given
|
||||
samples and equation.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
residual = self.compute_residual(samples=samples, equation=equation)
|
||||
cond = self.current_condition_name
|
||||
|
||||
r_norm = self.eta * torch.abs(residual) / torch.max(torch.abs(residual))
|
||||
self.weights[cond] = (self.gamma * self.weights[cond] + r_norm).detach()
|
||||
|
||||
loss_value = self._vectorial_loss(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
|
||||
self.store_log(loss_value=float(self._vect_to_scalar(loss_value)))
|
||||
|
||||
return self._vect_to_scalar(self.weights[cond] ** 2 * loss_value)
|
||||
2
setup.py
2
setup.py
@@ -15,7 +15,7 @@ VERSION = meta['__version__']
|
||||
KEYWORDS = 'machine-learning deep-learning modeling pytorch ode neural-networks differential-equations pde hacktoberfest pinn physics-informed physics-informed-neural-networks neural-operators equation-learning lightining'
|
||||
|
||||
REQUIRED = [
|
||||
'numpy', 'matplotlib', 'torch', 'lightning', 'pytorch_lightning'
|
||||
'numpy<2.0', 'matplotlib', 'torch', 'lightning', 'pytorch_lightning'
|
||||
]
|
||||
|
||||
EXTRAS = {
|
||||
|
||||
437
tests/test_solvers/test_rba_pinn.py
Normal file
437
tests/test_solvers/test_rba_pinn.py
Normal file
@@ -0,0 +1,437 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.problem import SpatialProblem, InverseProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import RBAPINN as PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.loss import LpLoss
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
||||
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
||||
|
||||
|
||||
class InversePoisson(SpatialProblem, InverseProblem):
|
||||
'''
|
||||
Problem definition for the Poisson equation.
|
||||
'''
|
||||
output_variables = ['u']
|
||||
x_min = -2
|
||||
x_max = 2
|
||||
y_min = -2
|
||||
y_max = 2
|
||||
data_input = LabelTensor(torch.rand(10, 2), ['x', 'y'])
|
||||
data_output = LabelTensor(torch.rand(10, 1), ['u'])
|
||||
spatial_domain = CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]})
|
||||
# define the ranges for the parameters
|
||||
unknown_parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
|
||||
|
||||
def laplace_equation(input_, output_, params_):
|
||||
'''
|
||||
Laplace equation with a force term.
|
||||
'''
|
||||
force_term = torch.exp(
|
||||
- 2*(input_.extract(['x']) - params_['mu1'])**2
|
||||
- 2*(input_.extract(['y']) - params_['mu2'])**2)
|
||||
delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
|
||||
|
||||
return delta_u - force_term
|
||||
|
||||
# define the conditions for the loss (boundary conditions, equation, data)
|
||||
conditions = {
|
||||
'gamma1': Condition(location=CartesianDomain({'x': [x_min, x_max],
|
||||
'y': y_max}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'gamma2': Condition(location=CartesianDomain(
|
||||
{'x': [x_min, x_max], 'y': y_min
|
||||
}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'gamma3': Condition(location=CartesianDomain(
|
||||
{'x': x_max, 'y': [y_min, y_max]
|
||||
}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'gamma4': Condition(location=CartesianDomain(
|
||||
{'x': x_min, 'y': [y_min, y_max]
|
||||
}),
|
||||
equation=FixedValue(0.0, components=['u'])),
|
||||
'D': Condition(location=CartesianDomain(
|
||||
{'x': [x_min, x_max], 'y': [y_min, y_max]
|
||||
}),
|
||||
equation=Equation(laplace_equation)),
|
||||
'data': Condition(input_points=data_input.extract(['x', 'y']),
|
||||
output_points=data_output)
|
||||
}
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_),
|
||||
'data2': Condition(
|
||||
input_points=in2_,
|
||||
output_points=out2_)
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
|
||||
class myFeature(torch.nn.Module):
|
||||
"""
|
||||
Feature: sin(x)
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(myFeature, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
t = (torch.sin(x.extract(['x']) * torch.pi) *
|
||||
torch.sin(x.extract(['y']) * torch.pi))
|
||||
return LabelTensor(t, ['sin(x)sin(y)'])
|
||||
|
||||
|
||||
# make the problem
|
||||
poisson_problem = Poisson()
|
||||
model = FeedForward(len(poisson_problem.input_variables),
|
||||
len(poisson_problem.output_variables))
|
||||
model_extra_feats = FeedForward(
|
||||
len(poisson_problem.input_variables) + 1,
|
||||
len(poisson_problem.output_variables))
|
||||
extra_feats = [myFeature()]
|
||||
|
||||
|
||||
def test_constructor():
|
||||
PINN(problem=poisson_problem, model=model, extra_features=None)
|
||||
with pytest.raises(ValueError):
|
||||
PINN(problem=poisson_problem, model=model, eta='x')
|
||||
PINN(problem=poisson_problem, model=model, gamma='x')
|
||||
|
||||
|
||||
def test_constructor_extra_feats():
|
||||
model_extra_feats = FeedForward(
|
||||
len(poisson_problem.input_variables) + 1,
|
||||
len(poisson_problem.output_variables))
|
||||
PINN(problem=poisson_problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
|
||||
|
||||
def test_train_cpu():
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=1,
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model,
|
||||
extra_features=None,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
ntrainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu')
|
||||
t = ntrainer.train(
|
||||
ckpt_path=f'{tmpdir}/lightning_logs/version_0/'
|
||||
'checkpoints/epoch=4-step=10.ckpt')
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
|
||||
def test_train_load():
|
||||
tmpdir = "tests/tmp_load"
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model,
|
||||
extra_features=None,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn,
|
||||
max_epochs=15,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
new_pinn = PINN.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt',
|
||||
problem = poisson_problem, model=model)
|
||||
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
||||
assert new_pinn.forward(test_pts).extract(
|
||||
['u']).shape == pinn.forward(test_pts).extract(['u']).shape
|
||||
torch.testing.assert_close(
|
||||
new_pinn.forward(test_pts).extract(['u']),
|
||||
pinn.forward(test_pts).extract(['u']))
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
def test_train_inverse_problem_cpu():
|
||||
poisson_problem = InversePoisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
||||
n = 100
|
||||
poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model,
|
||||
extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=1,
|
||||
accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
|
||||
# # TODO does not currently work
|
||||
# def test_train_inverse_problem_restore():
|
||||
# tmpdir = "tests/tmp_restore_inv"
|
||||
# poisson_problem = InversePoisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
||||
# n = 100
|
||||
# poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
||||
# pinn = PINN(problem=poisson_problem,
|
||||
# model=model,
|
||||
# extra_features=None,
|
||||
# loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn,
|
||||
# max_epochs=5,
|
||||
# accelerator='cpu',
|
||||
# default_root_dir=tmpdir)
|
||||
# trainer.train()
|
||||
# ntrainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
# t = ntrainer.train(
|
||||
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=10.ckpt')
|
||||
# import shutil
|
||||
# shutil.rmtree(tmpdir)
|
||||
|
||||
|
||||
def test_train_inverse_problem_load():
|
||||
tmpdir = "tests/tmp_load_inv"
|
||||
poisson_problem = InversePoisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
||||
n = 100
|
||||
poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model,
|
||||
extra_features=None,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn,
|
||||
max_epochs=15,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
new_pinn = PINN.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt',
|
||||
problem = poisson_problem, model=model)
|
||||
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
||||
assert new_pinn.forward(test_pts).extract(
|
||||
['u']).shape == pinn.forward(test_pts).extract(['u']).shape
|
||||
torch.testing.assert_close(
|
||||
new_pinn.forward(test_pts).extract(['u']),
|
||||
pinn.forward(test_pts).extract(['u']))
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
# # TODO fix asap. Basically sampling few variables
|
||||
# # works only if both variables are in a range.
|
||||
# # if one is fixed and the other not, this will
|
||||
# # not work. This test also needs to be fixed and
|
||||
# # insert in test problem not in test pinn.
|
||||
# def test_train_cpu_sampling_few_vars():
|
||||
# poisson_problem = Poisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3']
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# poisson_problem.discretise_domain(n, 'random', locations=['gamma4'], variables=['x'])
|
||||
# poisson_problem.discretise_domain(n, 'random', locations=['gamma4'], variables=['y'])
|
||||
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'})
|
||||
# trainer.train()
|
||||
|
||||
|
||||
def test_train_extra_feats_cpu():
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
trainer.train()
|
||||
|
||||
|
||||
# TODO, fix GitHub actions to run also on GPU
|
||||
# def test_train_gpu():
|
||||
# poisson_problem = Poisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'})
|
||||
# trainer.train()
|
||||
|
||||
# def test_train_gpu(): #TODO fix ASAP
|
||||
# poisson_problem = Poisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# poisson_problem.conditions.pop('data') # The input/output pts are allocated on cpu
|
||||
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'})
|
||||
# trainer.train()
|
||||
|
||||
# def test_train_2():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(problem, model)
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# def test_train_extra_feats():
|
||||
# pinn = PINN(problem, model_extra_feat, [myFeature()])
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(5)
|
||||
|
||||
|
||||
# def test_train_2_extra_feats():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(problem, model_extra_feat, [myFeature()])
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# def test_train_with_optimizer_kwargs():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(problem, model, optimizer_kwargs={'lr' : 0.3})
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# def test_train_with_lr_scheduler():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(
|
||||
# problem,
|
||||
# model,
|
||||
# lr_scheduler_type=torch.optim.lr_scheduler.CyclicLR,
|
||||
# lr_scheduler_kwargs={'base_lr' : 0.1, 'max_lr' : 0.3, 'cycle_momentum': False}
|
||||
# )
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# # def test_train_batch():
|
||||
# # pinn = PINN(problem, model, batch_size=6)
|
||||
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# # n = 10
|
||||
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# # pinn.train(5)
|
||||
|
||||
|
||||
# # def test_train_batch_2():
|
||||
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# # n = 10
|
||||
# # expected_keys = [[], list(range(0, 50, 3))]
|
||||
# # param = [0, 3]
|
||||
# # for i, truth_key in zip(param, expected_keys):
|
||||
# # pinn = PINN(problem, model, batch_size=6)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# # pinn.train(50, save_loss=i)
|
||||
# # assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# if torch.cuda.is_available():
|
||||
|
||||
# # def test_gpu_train():
|
||||
# # pinn = PINN(problem, model, batch_size=20, device='cuda')
|
||||
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# # n = 100
|
||||
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# # pinn.train(5)
|
||||
|
||||
# def test_gpu_train_nobatch():
|
||||
# pinn = PINN(problem, model, batch_size=None, device='cuda')
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 100
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(5)
|
||||
|
||||
Reference in New Issue
Block a user